
                                                                                 DAF II: Digitization Assets Factory 

 
 
 

DAF II: DIGITIZATION ASSETS FACTORY  

A DIGITIZATION WORKFLOW MANAGEMENT SYSTEM FOR 

MASSIVE DIGITIZATION PROJECTS 

SYSTEM DOCUMENTATION 

VERSION: DRAFT  

4 SEPTEMBER, 2007 

[AUTHORS: FADI EDWARD, MOHAMMED ABUOUDA, MOHAMED YAKOUT] 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  1 

CONTENTS 

1. INTRODUCTION ........................................................................................................3 

2. SYSTEM DATA MODEL ............................................................................................5 

2.1 ABSTRACT DATA MODEL..........................................................................................5 
2.1.1 The Job .......................................................................................................................5 
2.1.2 The JobType................................................................................................................5 
2.1.3 The Phase ...................................................................................................................6 
2.1.4 The User .....................................................................................................................6 
2.1.5 The Collection ............................................................................................................6 
2.1.6 The Workstation..........................................................................................................6 

2.2 ENTITY RELATIONSHIP DIAGRAM (ERD) <MA> ......................................................6 
2.3 ENTITY T S DIAGRAM (ETS) <MA>.........................................................................6 
2.4 DATA FLOW DIAGRAM <MA>..................................................................................7 
2.5 CLASS DIAGRAM <MA>...........................................................................................7 

3. SYSTEM MODULES ..................................................................................................8 

3.1 CHECK-IN MODULE ..................................................................................................8 
3.1.1 Metadata of the Job....................................................................................................9 
3.1.2 Job Behavior in the System.......................................................................................11 
3.1.3 Check-In Plug-In ......................................................................................................12 
3.1.4 Batches Creation and Modification .........................................................................12 

3.2 RETRIEVAL MODULE...............................................................................................13 
3.3 PHASES MANAGER MODULE...................................................................................17 
3.4 ADMINISTRATION MODULE.....................................................................................24 

3.4.1 Commons In The Administration Module.................................................................25 
3.4.2 Implementation.........................................................................................................25 
3.4.3 Roles .........................................................................................................................26 
3.4.4 Job Type....................................................................................................................31 
3.4.5 Phases.......................................................................................................................35 
3.4.6 User ..........................................................................................................................40 
3.4.7 Workstation...............................................................................................................45 
3.4.8 Collections................................................................................................................49 
3.4.9 General Settings .......................................................................................................54 

3.5 REPORTING MODULE ..............................................................................................57 
3.6 ARCHIVING MODULE ..............................................................................................68 

4. SYSTEM HANDLERS ...............................................................................................82 

4.1 AUTHENTICATION AND AUTHORIZATION HANDLER ................................................82 
4.2 XML PHASES HANDLER .........................................................................................82 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  2 

4.3 FILES AND FTP HANDLER .......................................................................................85 
4.4 DATABASE HANDLER..............................................................................................93 

4.4.1 Singletoon Connection....................................................................................................93 
4.4.2 OperationInfo Object......................................................................................................93 

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  3 

1. INTRODUCTION  

When an end user accesses images, PDF, audio, video, or any other multimedia document 
through the Internet, this means that the primary purpose of the entire digitization effort is met. 
From start to finish, digital multimedia documents production is a manufacturing and delivery 
process which should be likened to an assembly line. To date, the digitization process in many 
libraries has concentrated on the input (scanning) side, and fulfillment via the Internet and 
Content Management Software. What has not received sufficient attention is automating, 
tracking, and managing the entire workflow with particular emphasis on what happens between 
scanning and delivery. 

BA accepted this challenge as a part of its Digital Assets Repository (DAR) project to achieve a 
truly device-independent, integrated and automated workflow. The result was the Digitization 
Workflow Management System, which is a highly reliable digitization workflow management 
system that can be customized for large and challenging digitization projects, or be used out-of-
the-box. In either case, the BA’s workflow system improves productivity and therefore reduces 
both the cost of production and the time it takes to complete a project. 

A Digitization Laboratory requires an efficient and highly integrated digitization system 
consisting of hardware, software and workflow management processes that can fully exploit the 
unique capabilities of the Digital Lab. Several experiences with large digitization projects taught 
us the need for a highly integrated system that manages the whole process of digitization with its 
phases, system users, exception handling, history tracking of actions, files movement, archiving, 
and integration with the LIS and the library digital repository. Such a system would need to be 
flexible enough to simultaneously manage multiple projects with a diversity of materials 
,covering books, journals, newspapers, manuscripts, unbound materials, audio, video, and slides. 
The system would also need to seamlessly feed content to the libraries' digital repository to 
ensure the preservation of the content for years to come. 

As any workflow, the digitization workflow is a description of a business process in sufficient 
details that it is able to be directly executed by a workflow management system. A digitization 
workflow is composed of a sequence of phases. The phases are undertaken by the digital lab 
resources, such as digital lab operators and devices (scanners or encoding servers). Several tools 
are used to execute elementary activities within a digitization phase, such as image processing 
and OCR suits. 

Workflow management systems are used to configure and control structured business processes 
from which well-defined workflow models and instances can be derived. However, the 
proprietary process definition frameworks imposed make it difficult to support (i) dynamic 
evolution (i.e. modifying process definitions during execution) following unexpected or 
developmental changes in the business processes being modeled; and (ii) deviations from the 
prescribed process model at runtime. Without support for dynamic evolution, the occurrence of a 
process deviation requires either suspension of execution while the deviation is handled 
manually, or an entire process abort. However, since most processes are long and complex, 
neither manual intervention nor process termination are satisfactory solutions. Manual handling 
incurs an added penalty: the corrective actions undertaken are not added to the system history or 
transaction log, and so natural process evolution is not incorporated into future iterations of the 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  4 

process. Other evolution issues include problems of migration, synchronization and version 
control. 

From our experience, the digitization process is one of the business processes that is affected by 
the above limitations. These limitations make it hard to be commited to a rigid modeling 
structure due to the lack of flexibility inherent in a framework that, by definition, imposes 
rigidity. As a result, users are forced to work outside of the system, and/or constantly revise the 
static process model in order to successfully support their activities, thereby negating the 
efficiency gains sought by implementing a workflow solution in the first place. It is, therefore , 
desirable to extend the capabilities of workflow systems by developing an approach to dynamic 
flexibility based on natural work practices. 

DAFv2 avoids the above limitations by providing the facility to design a rigid workflow and 
allow for the dynamic evolution and deviations. This helps in handling exceptions by forwarding 
the jobs to an appropriate phase, which is not in the rigidly defined sequence, without the manual 
intervention. For example when digitizing books, a printed book passes by scanning, processing, 
OCRing, archiving then encoding to PDF, while for a handwritten book, it could not go to the 
OCR phase and, hence, should be forwarded to the archiving then encoding phase. The jobs can 
also be redirected back to a previous phase due to a quality assurance decision. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  5 

2. SYSTEM DATA MODEL 

To achieve a truly device-independent, integrated and automated digitization workflow, the 
system introduces a data model capable of defining different workflows for various types of 
objects. Each type of object can have its workflow defined by what we call Phase Sequence. 

2.1 Abstract Data Model 

The data model diagram as shown in Fig. 1., consists of six types of entities involved in 
managing the digitization workflow. 

Fig. 1. DAFv2 System Data Model. 

2.1.1 The Job 

It is the main entity that represents the object being digitized. For example, a printed book for 
Naguib Mahfouz, photos for an event, a map of Alexandria, a music sheet for Omar Khayrat, a 
video film about the High Dam, etc. The Job can be one of any Job Type in the system. The Job 
should pass through the entire digitization Phases required for the Job Type. Each Job is 
identified by a unique ID and also can be identified by an External ID, which is the ID of the 
document in the external source as the ILS ID and/or Barcode. The Job has a priority and a life 
time in the workflow otherwise it will be reported as a Late Job. 

2.1.2 The JobType 

The Job Type entity represents all the types of materials that can be digitized. The Job Type can 
be a book, a map, an audio item, a video, or any other type of document that needs a special 
digitization workflow. 

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  6 

2.1.3 The Phase 

The Phase entity represents a task or a unit of work that should be applied on a specific Job Type 
in its digitization workflow. Each Job Type has its own sequence of Phases defined apriori in a 
Phase Sequence to obtain a digitized version of the Job. Each Job passes through several Phases 
according to its Job Type. For example, for a Printed Book Job Type, the digitization Phases 
could be Scanning, Processing, OCRing, Archiving and PDF Encoding, while for a Map Job 
Type, the digitization Phases could be Scanning, Processing, and JPG Internet derivatives. The 
same Phase can be done on several Workstations in the system; Workstations can be assigned  
for each Phase according to their capabilities. Scanning is done on Workstations with book 
scanners, Processing is done on Workstations with image processing software and so on. A time 
period is attached to each Phase so that if it took longer time, the Job will be reported as Late 
Job. After finishing any Phase, the Users are able to provide information about the Phase. This 
information is divided into Phase specific information, general comments, and file level 
information. This information will help the next operator who is working on the next Phase 
,whether it is a new or a previous Phase. 

2.1.4 The User 

The User entity represents the system Users or the Digital Lab operators. Several roles can be 
defined for the Users to manage their access on the Jobs. The User can perform several types of 
Phases of a specific Job Type. The User can also be assigned to work on some Collections in the 
system. 

2.1.5 The Collection 

The Collection entity represents logical grouping for the Jobs. It may represent a digitization 
project or a private collection. A Collection may contain several documents of different Job 
Types. A group of Users can be assigned to work on a Collection. Several Workstations in the 
system can be allocated for a Collection. 

2.1.6 The Workstation 

The Workstation entity represents the computer where the execution of the Phases is performed. 
Several Phases can be done on one Workstation and a Workstation can be allocated for several 
Collections. 

2.2 Entity Relationship Diagram (ERD) <MA> 

 

2.3 Entity T S Diagram (ETS) <MA> 

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  7 

2.4 Data Flow Diagram <MA> 

 

2.5 Class Diagram <MA> 

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  8 

3. SYSTEM MODULES 

Fig. 2. shows a representation for the architecture of the DAFv2. The system provides all the 
services through five main modules: Check-In,  Phase Manager, Reporting, Archiving and 
Administration modules. All modules provide the services after passing through an 
Authentication and Authorization Handler. The XML Phases Definition Handler accepts the 
requests related to applying the necessary checks and actions before and after performing a 
digitization Phase. The File Handler is used mainly by the XML Phases Definition Handler to 
manage the files checks, copying and movements. All the system configurations, 
parameterizations and transactions are stored in a database and managed through the Database 
Handler. 

 

 

Fig. 2 System Architecture 

3.1 Check-In Module 

The Check-In Module is responsible for creating a Job in the system and fires it to start. 
Although the Check-in Module determines the first Phase of a Job depending on its Phase 
Sequence , the system allows for handling an exception and allows the Job to start from an 
intermediate Phase within the workflow as long as its prerequisites are met. For example, 
although a printed book Phase Sequence is defined to pass through the Phases Scanning, 
Processing, OCRing, Archiving, and Encoding, it is also possible to assign it to the Processing 

P
h
a
s
e
 M
a
n
a
g
e
r

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  9 

Phase as long as the TIFF files are already in the working folder. This allows the 
accommodations of the system to receive scanned books from external sources. 

DAFv2 check-in has been designed and built to allow for the integration with any metadata 
source, as Integrated Library System (ILS), document registry, MARC or MODS files. This 
flexible integration has been achieved by making the check-in module plug-in based as described 
in Fig. 4. The system allows each library to write its own check-in plug-in for its metadata source 

In Order to check-in a Job in a digitization system, four topics should be addressed: 

1- The Job Metadata and how to rejoin it to its source after the digitization is complete,  

2- Defining the Path the Job is going to take in the digitization workflow and any work 
done before that can be used to accelerate the digitization process. 

3- The integration of Plug-ins into the client to extract the Information from several ILS 
systems. 

4- Batches creation and modification. 

 

3.1.1 Metadata of the Job 

There is no Metadata Stored within the DAF system, instead all Metadata is stored in a separate 
Database and this Metadata is updated and retrieved through a Views and a Stored Procedures 
layer inside the Metadata DB. Such a design will allow for larger flexibility for storing the 
Metadata but with less performance. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  10 

The metadata maintained by the system is not a comprehensive description, as the system is not 
used for displaying or fetching Jobs based on the Metadata. In the mean time, the system allows 
the user to store all the metadata he/she wants to add within a Lob Object. 

So basically, the system maintains: 

a. The Title,  

b. The Creator of the Job,  

c. Three generic Information fields that can be used to store the volume or any other 
information according to the users choices,  

d. The Language (all languages are added in a dynamic way through the Administration 
Manager), 

e. A Lob Object. 

The Title and Creator are stored mainly for display purposes. The Lob Object can be used to 
store a Marc21 record, a Dublin Core, a MODS Xml or any other sort of metadata that the user 
needs to store with the Job, and that he/she requires in the publishing or Check-Out phase. So the 
Lob Object is used to compensate any deficiencies that may occur due to insufficient Metadata 
fields. 

The Check-In Module maintains the relation with the ILS system (source of metadata) to be able 
to rejoin the Job after it has been checked out, through a dynamic list of External IDs. DAFv2 
maintains a dynamic External IDs Types list defined by the user, and also maintains several 
External IDs for each Job according to the following criteria. 

1- Any Job should have at least one External ID. 

2- Each Job has only one default External ID. 

3- The default External ID is unique among all Jobs External IDs with the same type (even 
the non-default ones). 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  11 

 
A simple scenario concerning the External IDs is as follow: 

1- Create an External ID Type equivalent to your ILS unique Identifier. 

2- Implement the Check-In Plug-in that extracts from your ILS, and for the method 
getTypeIDPairs() make sure it returns the ILS unique key as one of the returned External 
IDs. 

3.1.2 Job Behavior in the System 

Since the Check-In Module is the main entry point of the system, there is some information that 
should be specified about the Job and how it will behave in the system. Some of these properties 
can be modified later, others cannot (in this version). These properties can be enumerated as 
follows: 

1- Collection: For each Job you need to define its Collection, which is the logical grouping 
or the project, or the source this Job came from. 

2- Batch: You need also to specify which Batch from within the selected Collection this Job 
came in. 

3- Job Condition: Defining the Job Condition helps the operators to better handle the Job. 

4- Job Type: The Job Type define the Path the Job is going to take in the system. 

5- Priority: Each Job is assigned a Priority that will help the System decide its position in 
the priority queues within the System (In accordance with its due date and if it is Re-
Done or not). 

6- Server: DWMS allows User to have his/her Jobs on several servers, but each Job has to 
be fully contained on one server and cannot be divided. (In the future actions/versions we 
will allow Job move from one server to another using the Client). 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  12 

7- Assign: You need to assign a Phase for the Job to start with (by default it is set to the 
first Phase in the Sequence of this Job Type). As well as a User that can performs this 
Phase (by default it is set to “Auto” user which would allow any free user to start it). 
This feature is added to allow 2 things: a- Ingesting the Job into the system in an 
advanced Phase (rather than the first Phase in the Sequence of the Job Type). b- 
Explicitly assign the Job to a specific user that may have extra skills to handle this Job or 
at least to increase its priority by assigning it to a user that is currently available. 

8- Pre-Assign: A Pre-Assign feature was added ( which User can ignore and  not use) that 
allows the Check-In Operator to define who is the User/Operator who will work on this 
Job through all the Different Phases of the Sequence of this Job. This feature can be used 
to force special types of Jobs to be assigned to Operators with special skills needed by 
this Job. 

3.1.3 Check-In Plug-In 

DWMS check-in has been designed and built to allow for the integration with any metadata 
source as the Integrated Library System (ILS), document registry, MARC or MODS files. This 
flexible integration has been achieved by making the check-in module built as plug-in based. The 
system allows each library to write its own check-in plug-in for its metadata source. 

Each new ILS System should implement its own Check-In plug-in by implementing the provided 
Check-In Interface (you can find the interface at 
org.bibalex.daf.managers.checkin.ICheckInPlugin). 

This interface includes 2 types of methods; the first type is control methods, like collect that 
indicates whether a successful retrieval is done or not, or search that allows the plug-in to 
perform a search instead of an exact match. The second type is used by the system to collect the 
gathered information and assign them to their respective locations in the system, like 
getTitle(), getCreator(), getLanguage(), …. Please visit the Plug-In Java Doc 
page for more details about how to implement each function. 

For each plug-in added, the User need to add the full Plug-in path within the NewJob section in a 
Node called “CheckInPlugIns” in its Caption, for several plug-ins add them with semi column 
separated as follow: 

<Element Name="CheckInPlugIns" 
Caption="org.bibalex.daf.virtuaplugin.VirtuaPlugIn;org.bibalex.da
f.digiarabplugin.DigiArabPlugIn;org.bibalex.daf.ameelPlugIn.Ameel
PlugIn;org.bibalex.daf.indianplugin.IndianPlugin;org.bibalex.daf.
ebarcodeplugin.EBarcodePlugIn;org.bibalex.daf.digitalplugin.Digit
alPlugIn"></Element>. 

 

3.1.4 Batches Creation and Modification 

Moreover, since the Jobs arrive at the digitization laboratory in batches, the check-in module 
contains a part to manage the arrived batches. The Batches Manager allows the Check-In 
Operator to Add/Delete/Modify Batches. For each Batch the User need to specify the following: 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  13 

1- Name: which is the name identifying each Batch. It is recommended to add some kind of 
number or date that relates to the actual physical Batch in this field. 

2- Date: The Batch date, the default value is the current date. 

3- Comment: Any comment you need to add to the batch. 

4- Collection: As mentioned earlier, each Batch belongs to only one Collection. 

5- Job Type: A user can define a Job Type for each Batch that can be used by the Check-In 
Manager as a recommendation for all the Jobs in this Batch.  The user, however, can still 
modify the Job Type for each Job in the Batch if necessary. 

 

3.2 Retrieval Module 

The retrieval module serves for the retrieval of the Jobs from the Archiving system, either for the 
Jobs that have been Checked-Out from the System and need more processing, or for the Jobs that 
are still in the system but it is prefered to work on their archived version rather than the one still 
in the System (in this case the Job folder on the server is overwritten by the version on the 
Storage).  



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  14 

 

Since the Archiving system allows for the archiving of more than one version of the Job on 
different Medias, the retrieval as well is able to retrieve any version of the Job from the selected 
Media. You will need to search for the Job, retrieve it, and then assign it to a Job Type / Phase / 
User. 

 

To find the Job you want to retrieve, you can search for it (using a simple Search Screen similar 
to the Simple Search page. In addition you can Choose whether you are searching within the 
Checked-Out Jobs/Active Jobs or Any). All Versions/Medias are then listed so that the User can 
choose which version to retrieve from which Media. 

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  15 

The retrieval is implemented in a plug-in based way, each  retrieval plug-in should implement the 
provided Retrieval Interface (you can find the interface at 
org.bibalex.daf.managers.checkin.IRetrievalPlugin). 

This interface includes the method retrieve Job. This method takes the Job object to retrieve, 
the version, the media barcode, the backupInfo of the job and the 
RetrievalEventNotifier object to notify the GUI. Please visit the Plug-In Java Doc page 
for more details about how to implement each function. 

 

For each plug-in added, the User need to add the Full Plug-in path within the 
RetrievalManagerGUI section in a Node called “RetrievalPlugIns” in its Caption, 
for several plug-ins add them with semi column separated as follows: 

<Element Name="RetrievalPlugIns" 
Caption="org.bibalex.daf.retrievalplugins.DriveRetrieval;org.biba
lex.daf.retrievalplugins.FolderRetrieval;org.bibalex.daf.retrieva
lplugins.OnlineStorageRetrieval"></Element> 

In addition to that each plug-in should have a section with the name of its class. This section 
contains the Media Types from which this plug-in can retrieve.  

For example, the FolderRetrieval plug-in can retrieve jobs from two media types, tape and 
CD, so its section in the resource file is: 

<Section Name="org.bibalex.daf.retrievalplugins.FolderRetrieval"> 
<Element Name="MediaTypes" Caption="CD;Tape"></Element> 
</Section> 

The system is shipped with 2 Plug-Ins implemented: 

1. Drive Retrieval: 

If the selected Media Type is CD, the Drive Retrieval option appears in the “Available 
Retrieval Plug-ins” list . 

This Plug-in retrieves Jobs from the drive specified by the user. The initialize method of this 
plug-in launches a dialog box where the user selects the drive to retrieve the Job from. 

 

The retrieveJob method in this plug-in takes the Job-object-to-retrieve, the version, the media 
barcode, the backupInfo of the job and the RetrievalEventNotifier object to 
notify the GUI. 

The retrieve location can be: 

If the backupAs info has length, the retrieve location is: 
Drive:\\mediaBarcode\job.getPath()\_vVersion 
Or Drive:\job.getPath()\_vVersion 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  16 

If the backupAs is empty, the retrieve location is: 
Drive:\\mediaBarcode\job.getPath()\_vVersion 

If the Job folder exists on the selected drive with all the input parameters correct, it is fetched 
to your local working directory. 

2. Folder retrieval: 

If the selected Media Type is CD or Tape, the Folder Retrieval option appears in the 
“Available Retrieval Plug-ins” list . 

This Plug-in retrieves Jobs from the folder specified by the user. The initialize method of this 
plug-in launches a dialog box where the user browses for the location of the job folder on the 
m/c. 

 

The retrieveJob method in this plug-in takes the Job-object-to-retrieve, the version, the media 
barcode, the backupInfo of the job and the RetrievalEventNotifier object to 
notify the GUI. 

The retrieve location can be: 

If the backupAs info has length, the retrieve location is: 
FolderPath\mediaBarcode\ job.getPath()\_vVersion 
Or 
FolderPath:\job.getPath()\_vVersion 
If the backupAs is empty, the retrieve location is: 
FolderPath:\ mediaBarcode\ job.getPath()\_vVersion 

If the Job folder exists on the given location with all the input parameters correct, it is 
fetched to your local working directory. 

 

After the Job is fetched to your local working directory, you can inspect the files and modify 
them if needed. Then you should assign the Job to a Job Type (default value is the Job Current 
Job Type), a Phase to start in (the last Phase this Job has visited is selected by default), the User 
to perform this phase (the last user who performed this phase is selected by default). Phase 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  17 

Checks are performed to make sure that the retrieved Job, with its current files and folder 
structure, matches the requirements needed by the Phase that the Job was assigned to. 

 

Afterwards, the Job is automatically transferred to the server and assigned to the designated user 
in the pointed Phase and Job Type. In case an Active Job has been retrieved, the files on the 
server are overwritten and the current assignment as well. 

The retrieval also support Command Line Retrieval. 

3.3 Phases Manager Module 

The Phase Manager provides  the interface to the digitization laboratory operator. It allows the 
operator to request a new Job to work on, download the working files, and submit the Job back to 
the system to continue in its workflow. Moreover, the Phase Manager allows the operator to 
reject a Job after starting working on it. In this case, the operator will have to submit a rejection 
reason. Afterwards, the system will automatically assign the Job to the administrator to review 
the rejection reason and take the necessary actions. Also, the operator can redirect the Job to 
another Phase not in its default path; the redirection of Jobs is automatically confirmed if the 
operator has enough permission. Otherwise to redirect Jobs, the Jobs is automatically assigned to 
the administrator as pending until he/she accepts or denies this redirection. The redirection may 
be due to a problem in a previous Phase. For instance, while performing the OCR Phase, the 
operator might have discovered that there were some pages that need further Processing or that 
there were some pages missing that require scanning, thus they need to be returned to the 
Processing or Scanning Phase. 

In order to simplify solving problems that happen in previous Phases of digitization, DWMS 
allows the operator to add information on the produced files’ level. The information contains the 
files’ numbers, the required Phase that should be revisited, and the source of the problem. This 
information is saved in the database.  Once the Job is revisiting a previous Phase, the operator 
will be informed with the files that require reprocessing and the reasons. DWMS allows the 
administrator to define a list of reasons for each Phase to be revisited so that the operator can 
select the reasons from a drop-down list. This information is propagated for the next phases to 
take the necessary actions on the newly produced files. For example, suppose that in the OCR 
Phase files 20 to 25 are missing and require Re-Scanning. The Job will be redirected to the 
Scanning Phase with file info about the page numbers that require scanning. The Job will be 
forwarded to the Processing Phase with the files’ level information indicating that files 20-25 
require processing and so on. 

TODO: We could add : Phase Manager Concepts: 

From UI Perspective: 

Phase Manager: 

 

• The Phase Manger Module provides the interface to the digital laboratory user. 
 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  18 

• The Phase Manager GUI shows the Currently Working Jobs list, The list displays the following 
information: 
ID: The ID of the Job 

Job Name: The title of the Job 

Phase: The phase to be applied on the Job 

Status: The status of the Job (i.e. started)  

Date: The date when the Job was started. 

Started Before: The number of times this Job was started before on the corresponding phase. 

Ext.ID: The default External ID value of this Job. 

Ext.ID Type: the Type of the above mentioned External ID. 

 

• A Right Click on a Job in this list provides a context menu with 4 options: View Job History, 
View Metadata, View File Info, Edit File Info. 

 
• Job History shows detailed information about the history of this job. The history 

information is given by the User, Phase and Workstation for the job. Each row shows 
also the Job Status, Action Date and the File Count, which is number of files that have 
been added or modified during this Phase (and not the total pages count of the digitized 
media). This screen is very helpful in tracing the flow the job. 

 
• View Metadata displays the Job MetaData screen, which includes all the meta data 

information. 
 

 
• View File Info displays the ‘TODO’ File Info. It displays the type of the information 

whether inst or info, the phase to be revisited as well as the pages that have the 
problem, the reason for the redirect, the suggested user and the Done check box. For a 
Job to be done, all the Done check box entries in the File Info must be checked. 

 
• Edit File Info enables the user to edit the ‘Next’ File Info, add or remove Info. The 

added information has a type, whether inst or info, the phase to be revisited, the pages 
that have the problem, as well as the reason for the redirect and a comment on that 
redirection action. 

 

 

 

 

 

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  19 

 

On the bottom of the form, there exists buttons for the following actions: 

 

1.  Get Job: 
 

• This action allows the user to select a job to work on. Get Job starts by launching a 
dialog that lists all the available jobs for the user. A job is available for the user to 
work on if: 

 
• The user can work on the current phase of this job 
• and, the user can work on the collection to which this job belongs 
• and the job is assigned to this user or to the ‘Auto’ user 
 

• The list of Available Jobs displays information such as Job ID, Job Title, Next Phase 
to be done, User, External ID and External ID Type. Number of revisiting times for 
each job, with the corresponding phase, appears in the Revisiting Times column and it 
also shows  whether the current workstation is valid for the corresponding job or not. 
In case the Job is not eligible to start on the current Workstation, it will still appear in 
the list but with the flag “is valid workstation” set to false. 

 
• If the user is not allowed to select a job, the job to be started is by default the first job 

in the list which has the check box ‘Is Valid Workstation’ checked. 
 
• However, if the user has the right to select a job he/she must choose one of the jobs 

with box ‘Is Valid Workstation’ check box checked otherwise he/she will get an 
indicative error message and the Job will not start. 

 
• Selecting a job makes it in the starting state. In order to start a job the following 

actions take place: 
1) Check if the user can start the job(valid job and phase for this user on this 

workstation)and assign it to the current user, if needed(if assigned to ‘Auto’ 
user) 

2) Perform the pre-phase checks. 
3) Perform the pre-phase actions. The progress bar shows the process of 

transferring the job folder from the server to the local working directory. 
4) Propagate the previous status data from the previous TransactionLog entry 
5) Adjust the job status in the database. 
 

• When the Job folder is fetched successfully from the local working directory, The 
FileInfoViewer screen appears. This screen lists any FileLevelInfo for this job to be 
done in this phase. 

 
• The Job is now the first job in the ‘Currently Working Jobs’ list with its Status column 

set to ‘started’. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  20 

 

2. Done Job: 

 

Done Job button is used when the process of the phase is finished and the user wants to submit 
the job back to the system to continue in its workflow. ‘Done Job’ puts the job in the finishing 
state. For a job to finish, the following actions take place: 

1) Get necessary information to finish the job: phase, file handler, source and 
destination 

 
2) Check if the user can finish the job from his current workstation or not. 

 
 
3) If the job is being finished from the command line, mark all the FileLevelInfo 

entries for this phase as 'Done' 
 
4) Determine whether the user can finish the job because of the FileLevelInfo or 

not. A job cannot be finished in the following 2 cases: 
a) There exist entries in the 'Next' FileLeveloInfo file. In this case it should 

be redirected. 
b) There exist undone entries in the 'ToDo' FileLeveloInfo file. The user 

should 'Done' entries. 
 

5) Apply the post-phase checks. 
 
6) Apply the post-phase actions. 

 
 
7) Show the DataBase Info dialog to set database values such as in the OCR phase 

the user enters the Font Family, Learning Pages, Accuracies. And in the QA-
PDF phase the DataBase Info dialog is used to decide whether the Book is Image 
On Text, Contents Matched, Wrong text and Image Pairing, Pages in right order 
and PDF Error. 

 
8) The progress bar shows the process of transferring the job folder from the local 

working directory to the server. 
 

 
9) Update the 'ToDo' FileLevelInfo, Update the 'Next' FileLevelInfo and form the 

status data lob to add to the database. 
 
10) Insert Finish entry for this job in the database, and If the transaction completes 

successfully, delete the job folder from the local directory  
 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  21 

When the job is done successfully, the ‘Currently Working Jobs’ table is re-loaded to exclude the 
finished job. 

 

Special cases examples: 

 

Backup phase: 

The Phase Manager doesn’t insert the Finish entry for the job in the database because this step is 
done in the reflection call for the backup phase. The same thing applies on updating the 
FileLevelInfo, it is updated in the reflection call and not in the Phase Manager. 

 

 

3. Redirect Job: 

 

A job could be redirected to a Phase other than the next phase in its default path. The redirection 
may be due to a problem in a previous Phase. For instance, while performing the OCR Phase, the 
operator may discover that there were some pages that need further Processing or that there were 
some missing pages that require scanning, thus they need to be returned to the Processing or 
Scanning Phase. 

 

File Level Info: 

It contains the type of the information whether inst or info, the phase to be revisited as well as the 
pages that have the problem, the reason for the redirect and a comment on that redirection action. 

 

The user edit the FileLevelInfo in the ‘Next’ FileLevelInfo Editor for the job that requires 
redirection before pressing the ‘Redirect Button’. ‘Redirect Job’ dialog appears to enable the 
user to set the Next Use and the Next Phase. The job enters the redirecting state and in order to 
redirect successfully the following actions take place: 

1) Get necessary information to finish the job: phase, file handler, source and 
destination 

 
2) Determine whether the job can be redirected to the given phase because of the 

FileLevelInfo or not. A Job can be redirected to the given phase if it satisfies the 
following conditions: 

a. All the ToDo entries that point to this phase are done. 
b. The given phase is equal to or less than the minimum phase in the ToDo 

and Next FileLevelInfo. 
 

3) Applying post phase checks to redirect the job 
 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  22 

4) Applying post phase actions to redirect the job 
 

 
5) The progress bar shows the process of transferring the job folder from the local 

working directory to the server. 
 
6) Update the FileLevelInfo and the 'Next' FileLevelInfo. 

 
 
7) Mix the 'Next' FileLevelInfo and the updated 'ToDo' FileLevelInfo to form the 

status data lob to add to the database. 
 
8) Insert Redirect entry for this job in the database and if the transaction completes 

successfully, delete the job folder from the local directory  
 

The redirect information is propagated for the next phases to take the necessary actions on the 
new produced LevelInfo files. For example, suppose in the OCR Phase files 20 to 25 are missing 
and require Re-Scanning, the Job will be redirected to the Scanning Phase with file info about the 
page numbers that require scanning. The Job will be forwarded to the Processing Phase with the 
files’ level information indicating that files 20-25 require processing with the reason 
‘ORIGINATED from missing pages’ and so on. 

 

 

4. Reject Job: 

 

The user is allowed to reject a Job after he/she has started working on it. The rejection reason is 
added in the FileLevelInfo. When a user rejects a job, he/she sets the Next Phase and Next User 
in the ‘Reject Job’ dialog. 

 

After submitting the suggested Next Phase and Next User, the job becomes in a rejected state. A 
Job can be rejected from the given phase if it satisfies the following conditions: 

 

1) Get necessary information to finish the job: phase, file handler, source and 
destination. 

 
2) Determine whether the job can be rejected or not. A Job can be rejected to the 

given phase if the given phase is equal to or less than the minimum phase in the 
ToDo and Next FileLevelInfo. 

 
3) Post phase checks are not applied in this case. 
 
4) Apply post phase actions to redirect the job. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  23 

 
5) Update the FileLevelInfo and the 'Next' FileLevelInfo. 

 
 
6) Mix the 'Next' FileLevelInfo and the updated 'ToDo' FileLevelInfo to form the 

status data lob to be added to the database. 
 
7) Insert Redirect entry for this job in the database, and If the transaction 

completes successfully, delete the job folder from the local directory . 
 

 

5. Download: 

 

The user can download the selected job (download files defined for the current phase) in the 
‘Currently Working Jobs’ list from the server to the local working directory. This is helpful for 
when the user wants to restore the original server files after making changes on the local files, or 
when he/she changes the machine after uploading the job to the server (refer to Upload section). 
The following steps are needed to download the job to the user’s workstation: 

1) Get necessary information to download the job: phase, file handler, source and 
destination. 

 
2) Gets the phase definition used to download the job which has the following 

characteristics. 
� The pre-phase physical section doesn't have any repeated nodes, thus no 

folder is allowed twice. 
� The pre-phase doesn't contain any reflection or database sections. 
� The post-phase definition will have the "Name" and "NewName" values 

swapped. 
 

3) Apply pre-phase actions to download the job (download the files required for 
the current phase).  

 
4) Insert in the database download entry for this job and the number of files 

required to be transferred in order to download the job. 
 

Note: In order to download the whole job folder, the ‘Retrieve’ button in the search screen can be 
used. 

 

6. Upload: 

 

The user can upload the selected job (upload files defined for the current phase) in the ‘Currently 
Working Jobs’ list to the server from the local working directory. This is helpful for when the 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  24 

user wants to change the workstation before finishing the job. A user can not upload a job that 
was not downloaded on his current machine. The following steps are needed to download the job 
to the user’s workstation: 

1) Get necessary information to upload the job: phase, file handler, source and 
destination. 

 
2) Disable reflection call and database post-phase actions for the phase definition. 

 
 
3) Apply post-phase actions to upload the job (upload the files required for the 

current phase). 
 
4) Insert in the database the upload entry for this job  and the number of files 

required to be transferred in order to upload it. 
 

 
5) If the transaction completes successfully, delete the job folder from the local 

directory 
 

Note: In order to download the whole job folder, the ‘Overwrite’ button in the search screen can 
be used. 

 

7. Refresh List: 

 

If changes occur to the ‘Currently Working Jobs’ list, the user should refresh this list. Refresh 
List, loads the Working Job Table into the SortableTable object from the database. 

3.4 Administration Module 

The Administration Module is responsible for the necessary system parameterization and 
settings. It allows the administrator to define and manage the Job Types with their Digitization 
workflow and Phases, the Roles of the Users, Workstations, and Collections. It also provides the 
facility to control the matrix covering the relation between Users, Workstations, Job Types, and 
Collections. For example, the BA collection contains two Job Types; J1 and J2. The collection 
will be handled on Workstations W1 and W2 by the Users U1 and U2. U1 will be working on the 
Job Type J1, while U2 will be working on Job Type J1 and J2. 

Admin module carries out, mainly, the functionalities of (Add, Delete and Update) for system 
entities and settings which are Roles, Job Types, Phases, Users, Workstations, Collections and 
Collection Owners. Previous listing contains what we may introduce as “Major Entities” or most 
important ones. Actually, DAFv2 has other entities considered as “Minor Entities” which are 
Devices, External ID Types, Job Conditions, Languages, Operating Systems, and Media Types. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  25 

In order to clarify matters, major or minor entities both are required and necessary to build up 
DAFv2. 

This module also links up system entities. For example, assigning users to work in special 
workstations for accomplishing special Collection’s Jobs, requiring the administrator to make 
sure that all entities exist and are defined correctly, and then administrator can combine these 
entities together. 

Organizing dependencies is one of the admin module tasks, it is some kind of logical grouping 
for entities. Technically, you can consider organizing dependencies as implementation of one to 
many entities relation, i.e.. According to DAFv2’s database, relation between Job Type and 
Phase is one to many. If the administrator decides to create a new phase, he/she must be sure that 
a Job Type for this Phase is already found or he/she must create new Job Type. This could be 
applied to Collection Owner and Collection (one to many). 

3.4.1 Commons In The Administration Module  

Simple User and Developer can find common technique in the admin module interface and 
implementation; interface wise, user can detect that every tab of admin module has the following: 

1- Sortable Object (Table or List) for loading data. 

2- Add, Delete and Update buttons. 

These four functionalities affect the code and database implementation by creating four major 
functions (load, add, delete and update) for every tab (Class) in admin module. 

General speaking, this technique is followed throughout DAFv2. 

Another common technique is Master-Details viewing, which is simply, loading all master data 
in a section and adjusting all details by selecting any of master records. These two sections are 
implemented in 2 basic panels named materPanel and detailsPanel. 

3.4.2 Implementation 

Handling every entity in DFAv2 such as User, Workstation, Collection or any other entity, comes 
through implementing a special class for this one. These classes are grouped under one package 
“org.bibalex.daf.entities”. Developer can consider any entity class as the lowest level acts as 
coordinator between system Managers and Handlers. All entities are inherited from 
AdminModuleBase abstract class, which has the three basic functions (add, delete and update). 
Each entity implements these functions. 

DAFv2 Managers are the GUI components, in other words, DAFv2 parts that are responsible of 
interfacing data, all managers are grouped under “org.bibalex.daf.managers”. Administration 
module is one of these managers. System Handlers will be illustrated late on. 

Managers have main entry class; this one inherits JTabbedPane and it’s responsible of tabs 
objects instantiation, ordering these tabs and initializing ResourceManager. Usually, the entry 
class name is ManagerGUI. In admin module the class name is “AdminManagerGUI”. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  26 

In conclusion, Administration Module is one of system managers that interface and control 
system entities. System entities are represented in independent objects; they encapsulate all 
functionalities and actions and coordinates between system manager and handlers. Figure 3.3.1 
shows this hierarchy. 

 

 
Fig. 3.3.1 DAFv2 Component Hierarchy 

Starting from here, we will explain each tab of the administration modules, and focus on used 
entities, handlers and database actions. Also, we will provide scenarios, flow charts and affected 
database schema (portion of schema) if there is a need. 

3.4.3 Roles 

A Role is a grouping of Permissions, each User is assigned to a single Role. Any Permission can 
be found in more than one Role. To implement the Authorization system we had several choices, 
mainly 2 of them were more convenient than the others. The 1st one (not used) was to assign the 
Permissions to the Users directly using a many-to-many relation table. The 2nd one (used in our 
implementation) is to add Roles in the middle between the Users and the Permissions. Each Role 
is assigned a set of Permissions (many-to-many relation) and each User is assigned a single Role. 

The 1st option was better in case each User in the system requires Permissions  different from 
those of his/her colleagues. In this case we could of implemented a “Copy Permissions” feature 
or “Permissions Templates”so that the administrator can use it to reduce the overhead of creating 
a new User. The 2nd option is better in the maintenance of the Users’ permissions, but the 
Administrator will need to create a Role for each User in the case that all Users are different 
(require different Permissions). Moving from one solution to another will require minor 

Entities 

Manager 

User JobType Phase … 

Handlers 

 

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  27 

changes.

 

Fig. 3.4.3.2 

It is recommended to grant the Users only the required permissions for their day to day use of the 
system, even if they are highly trusted Users. This will reduce the occurrence of accidental 
errors. To achieve that goal, the Administrator needs to carefully define his Roles and who is 
assigned to which Role. 

Permission is implemented in a Tree; we have chosen such a design as it matches with our UI 
design. For example, we grouped all Checking-In functionality in the Check-In Module. From 
within the Check-In module, some Users can either create new Batches or ingest new Jobs. 
Imagine we have 3 categories of Users; first group is not allowed to make any kind of check-In 
operations, so they will not need to see the Check-In module at all. Another maybe allowed to 
only Ingest Jobs, but cannot create new Batches.  The 3rd has full right on the Check-In module. 
So the 3 trees will be as follow: 

 

 The currently implemented permissions are based on the UI except for a few cases. The first 
level in the Tree are the views, the second level are the Tabs; these 2 level are fully implemented 
for all the Views and Tabs. The 3rd level is either Buttons or special kinds of Permissions. Not all 
buttons are mapped to permissions, only the critical ones that may cause harm to the system in 

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  28 

case of Bad Use. For example, with the Delete Job Button, the Job Information will be lost in the 
case of its accidental usage. We have some special permissions (non-UI related) like: 

a. The View All in the Rates tab inside the Reporting module, such that a simple 
Operator can view only his rates while an administrator or an Advanced User can 
View all Users’ rates. 

b. Select Permission (Inside the Phase Manager): A User cannot select the Job he/she 
can work on, or he/she would only choose easy Jobs and leave the ones that need a 
lot of effort. An advanced User has the right to select the Job he/she wants to work 
on. 

c. Reject and Redirect (Inside the Phase Manager): To prevent unneeded Job delays in 
the system, only advanced User can Reject or Redirect a Job to a Phase that is not in 
the normal path, while a normal User can only propose such an action, and it has to 
be either approved or denied by an Advanced or Senior User. 

Permissions cannot be added from the UI, as they are attached to code according to each 
permission. So adding a new permission has to be done through the database directly, and an 
appropriate code is to be added to enforce the newly added permission. At system load, all 
permissions  allowed to the logged-in User are loaded into a hash table () that is later on fetched 
for checking on Permissions. (Please review the Javadoc for the MainControllerGUI.Initialize() 
and the Javadoc for the User.loadPermissions()). 

Wherever you need to check if the User has a specific Permission or not use: 
if( 
MainController.getMainController().getCurrentUser().hasPermission("CheckInManager$Report 
Data$Delete")) 

This code checks if the logged-in User has Permission to the Delete Button inside the Report 
Data within the CheckInManager or not. Please note that Tree levels are concatenated using “$”. 

 

 

3.4.3.1 Role Entity 

This entity inherits AdminModuleBase and implements the three basic functions (add, delete and 
update).  

Entity class’ constructor has one parameter for specifying working Role. It initializes database 
connection, queries the database with Role ID, and sets all class’ variables with queried data. 
Thus, initializing Role entity loads all its data in memory and gives developer opportunity to 
work on this data offline (without database connection), unless the operation he/she uses needs 
database connection (add, delete or update). Achieving this goal needs implementing setter and 
getter functions for all fields. 

Class’ methods (neither setters nor getters) have been implemented based on following concepts: 

1- Set the necessary variables (fields) 

2- Prepare array list of these variables (argument list) 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  29 

3- Pass store procedure name and argument list to database handler 

4- Receive data (if exists) from database into OperationInfo object (see database handler) 

Find the following code snippets 
 1.public  OperationInfo update(){ 
 2.ArrayList<Object> argList = new ArrayList<Object> (1); 
 3.argList.add(new Integer(id)); 
 4.argList.add(new String(roleDescription)); 
 5.return conn.executeProcedure("Role_Update",argList); 
 6.} 

Line 1:  Declares the function signature which returns OperationInfo object. 

Line 2:  Prepares argument list 

Lines 3-4: Sets argument list 

Lines : Passes stored procedure name and argument list to database connection and return data 
into the OperationInfo. 

Permission

PK Perm_ID

Perm_Description

Perm_TimeStamp

FK1 Perm_ParentID

Role

PK Role_ID

Role_Description

Role_TimeStamp

Role_Permission

PK,FK1 Role_ID

PK,FK2 Perm_ID

User

PK User_ID

User_Name

User_Password

User_AnyPhase

User_MaxJobs

User_IsActive

FK1 Role_ID

User_isLDAP

User_TimeStamp

 

3.4.3.2 Role Relations 

The Role table is part of 2 relations: 

1- Role_Permission: each Role has a set of Permissions. The Permissions are static (cannot 
be modified by the User), but the Roles are dynamic (an Administrator can dynamically 
create a new Role from the RoleManagerGUI). Assigning Permissions to a specific Role 
are stored in the Role_Permission table (many-to-many relation between Role and 
Permision). 
Also we need to mention that a Permission has an internal Parent Relation to Represent- 
the-Permissions-Tree (Perm_ParentID is a foreign key to Perm_ID).  

2- User: Each User is assigned to a single Role from which he/she inherits its permissions. 
This is a one-to-many relation maintained in the User table. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  30 

3.4.3.3 Role GUI 

AdminManagerGUI class initializes object of “RolesManagerGUI”, which inherits 
“ BaseManagerGUI”, which inherits JPanel. “RolesManagerGUI” has 3 panels: jPanel, 
masterPanel and detailsPanel. jPanel is the container of masterPanel and detailsPanel. 
masterPanel is the container of sortable table that loads all Collections of DAFv2. detailsPanel 
contains a JTextField that displays and edits the name of the selected Role from the masterpanel-
>ListBox or when adding a new Collection. The detailspanel also consists of a Check Boxes 
Tree. The text values within the tree are fixed since permissions are not edited dynamically, 
while the Check Boxes state depends on the current selected Role. Checking a parent node 
checks all its children, but they can be later unchecked. Un-checking a parent node unchecks all 
child nodes. It is not allowed to check a child node while one of its parents is not checked. 

When the user chooses the Roles tab, all Roles in DAFv2 will be loaded into the List Box. First 
row in this table will be selected and details data of the selected record will be adjusted in the 
details panel. Since the RolesManagerGUI inherits from the BaseManagerGUI, the 
implementation of the reloadManager nullifies all controls and reloads them as tabs change. 
This helps in getting the last updated data on refreshing tab. 

 

Changing any details data of selected row will enable the Update button, firing this button will 
save data into the database. Delete and Create buttons completing the 3 basic functionalities (add 
and delete). 

According to the Role Entity relations, data from the RoleManagerGUI is mapped to 2 tables,  

a. The Role Name is stored in the Role table (Role_Description). 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  31 

b. The Attached Permissions are stored in the Role_Permission table; On each update all 
the Permissions for this Role are deleted and then re-added from scratch. 

3.4.4 Job Type 

DAFv2’s Job Type is the logical grouping of Jobs. Job terminology is used widely in DAFv2 
system; it indicates for any object that need to be digitized, or any item in DAFv2. This includes 
Books, Images, Manuscripts, etc. Every Job must fall into 2 logical groups: Job Type and 
Collection. 

To answer the question why every Job falls into Job Type and Collection, we have to define 
each of them separately. A Job Type is a group of Phases, all Jobs belong to this type should 
pass over its Phases in order to undergo actions assigned to every Phase (see Phase). For 
example, if DAFv2 has a Job Type called “Latin Books”, this Job Type has 3 Phases Scanning, 
Processing and OCRing respectively. This means all Jobs belonging to “Latin Books” must pass 
over these Phases to accomplish their lifecycle. So, Job Type is a list of ordered actions 
distributed on one or more Phases; these actions must be applied (in order) to finish Job 
lifecycle. 

Collection of Jobs is a grouping of physical Jobs, it has no actions. Jobs frequently come in 
Batches that are organized in to Collections. Figure 3.4.3.1 and 3.4.3.2 shows deference between 
Job Type and Collection. 

 

Fig. 3.4.3.1 

 

 

Fig. 3.4.3.2 

Phase XPhase1 Phase 2 Phase 2

 

Collection

Batch 1 Batch 2

Job 7Job 6Job 5Job 2Job 1

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  32 

Transactions on Job Type are performed through Job Type entity and saved into JobType table. 

3.4.4.1 JobType Entity 

This entity inherits AdminModuleBase and implements the three basic functions (add, delete and 
update).  

Entity class’ constructor has one parameter for specifying working Job Type. It initializes 
database connection, queries the database with Job Type ID, and sets all class’ variables with 
queried data. Thus, initializing Job Type entity loads all its data in memory and gives the 
developer the  opportunity to work on this data offline (without database connection), unless 
he/she uses an operation that needs database connection (add, delete or update). Achieving this 
goal needs implementing setter and getter functions for all fields. 

Class’ methods (neither setters nor getters) have been implemented based on following concepts: 

5- Set the necessary variables (fields) 

6- Prepare an array list of these variables (argument list) 

7- Pass store procedure name and argument list to database handler 

8- Receive data (if exists) from database into OperationInfo object (see database handler) 

Find the following code snippets 
 1. public OperationInfo update(){ 
 2. ArrayList<Object> argList = new ArrayList<Object> (5); 
 3. argList.add(new Integer(id)); 
 4. argList.add(new String(JT_Name)); 
 5. argList.add(new String(JT_Description)); 
 6. argList.add(new Integer(JT_LifeTime)); 
 7. argList.add(new String(JT_NamingConvention)); 
 8. return conn.executeProcedure("JobType_Update",argList); 
 } 

Line 1:  Declares the function signature which returns OperationInfo object.  

Line 2:  Prepares argument list 

Lines 3-7: Sets argument list 

Lines 8: Passes stored procedure name and argument list to database connection and return data 
into the OperationInfo. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  33 

Batch

PK Batch_ID

FK2 Coll_ID

Batch_Name

Batch_Date

Batch_Comment

FK1 JT_ID

Batch_TimeStamp

Phase

PK Phase_ID

PK,FK1 JT_ID

Phase_Name

Phase_Sequence

Phase_MaxPeriod

Phase_Description

Phase_XMLDescription

Phase_TimeStamp

JobType

PK JT_ID

JT_Name

JT_LifeTime

JT_Description

JT_NamingConvention

JT_TimeStamp

Job

PK Job_ID

PK,FK3 TL_ID

Job_Date

Job_Path

Job_Priority

Job_DueDate

FK1 Batch_ID

FK2 JC_ID

Storage_ID

Job_TimeStamp

MediaType

PK MT_ID

MT_Name

MT_Size

MT_TimeStamp

FK1 Storage_ID

JobType_MediaType

PK,FK2 JT_ID

PK,FK1 MT_ID

  

3.4.4.2 JobType Relations 

JobType table relates 4 tables (Phase, Job, Batch and MediaType) 

Job Type relates Phase, Job and Batch as one to many relation, and relates MediaTypes as Many 
to Many relation (broken into JobType_MediaType table). 

We have discussed the relation between Phases and Job. For Batch, it is similar to Jobs 
relation’s; admin can declare that all Job in a Batch belong to a specific Job Type. Job Type’s 
relation with Media Type affects the archiving module (see Archiving module). It is answers the 
question “Which Job Type should be archived on Media types?”. For example, if the admin 
needs “Latin Books” to be archived on Tapes, then he/she should assign “Latin Book” to “Tape” 
media type. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  34 

3.4.4.3 JobType GUI 

AdminManagerGUI class initializes object of “JobTypesManagerGUI”, which inherits 
“ BaseManagerGUI”, which inherits JPanel. “JobTypesManagerGUI” has 3 panels: jPanel, 
masterPanel and detailsPanel. jPanel is the container of masterPanel and detailsPanel. 
masterPanel is the container of a sortable table that loads all Job Types of DAFv2. detailsPanel 
contains JButtons, JTextFields , JTextAreas, CheckBoxLists and JLabels. 

On choosing Job Type tab, all Job Types in DAFv2 will be loaded into the sortable table, first 
row in this table will be selected and details data of the selected record will be adjusted in the 
details panel. According the base class “ BaseManagerGUI”, the abstract function 
reloadManager implemented in JobTypesManagerGUI, this function nullify all controls and 
reload them on tabs change. This helps in getting the last updated data on refreshing tab. 

 

Changing any of details data of a selected row will enable the Update button; firing this button 
will save data into the database. Delete and Create buttons complete the 3 basic functionalities 
(add and delete). 

As illustrated in Figure 3.4.3.5, all data fields will be saved into JobType table, except the data 
coming from the Media Type check list, will be saved into JobType_MediType table (see Figure 
3.4.3.4). 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  35 

3.4.5 Phases 

Phase is the guide of Job; it’s the milestone in DAFv2 workflow. Checks and Actions are 
embedded into Phase. All Jobs must pass a pre-defined path of Phases to finish their lifecycle 
properly. 

Phases are grouped by Job Types; each Job Type has many Phases (see Job Type). Job Type 
organizes Phases inside by sequencing them, in other words, all Phases in a Job Type have 
sequence value, here comes the way marinating workflow. Jobs start, normally, with the least 
Phase sequence and move automatically to the next sequence. 

DAFv2 can maintain also abnormal workflow; consider the following example; a Job Type JT 
has 3 Phase X, Y and Z.  Phases are ordered according to sequences as X, Y and Z. A user has a 
Job in Phase X and needs to move this one to Phase Z. This scenario will be applied, as such: 

1- Job will finish in Phase X. 

2- DAFv2 will check the validity of starting the Job in Phase Z. 

3- If valid,  DAFv2  performs the movement. 

4- Job will finish in Phase Z. 

DAFv2 will continue afterwards normally until another enforced intervention. 

Previous scenario has special Handling with Backup Phase. Backup Phase is an obligatory Phase 
and must be the Phase with the largest Phase Sequence in its Job Type (the last Phase). Return to 
previous example, if Phase Z is the Backup Phase, DAFv2 will finish step 4 and do the 
following:  

5- Get the normal flow Phase Sequence (will be Phase Y) 

6- Redirect the Job automatically to this Phase 

7- Job will continue in flow normally until other intervention 

See figure 3.4.4.1. 

The concept of changing the flow will be introduced in details in Phase Manager Module through 
explaining Redirect and Reject functionalities. 

Usually Phases have sequence, but this is not always the case. Sometime Admin creates a Phase 
and prefers to inject it into the flow now so that he/she can create the Phase without assigning 
sequence value. This Phase is called “Available Phase” not “Sequence Phase”. In terms of 
“Sequence Phase”, the sequence of “Available Phase” must tend to infinity. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  36 

 

Fig. 3.4.4.1 

Phases has significant role in applying checks and actions, all Phases have XML definition that 
holds checks and actions format. This XML has 3 sections: Pre-Phase, Post Phase and Reflection 
call. In Pre-Phase, Admin can write checks and actions in XML format to be applied before Job 
starting in this Phase. Same logic applies to Post-phase, except that the execution of checks and 
actions will be on finalizing the Job. Sometimes Admin needs to write direct Java code to be 
implemented either on Pre-Phase or Post-Phase, this can be applied by writing Java code and 
feeding the XML definition with Java package and method name. 

3.4.5.1 Phase Entity 

As with Job Type entity -and all entities- Phase entity inherits from AdminModuleBase and 
implements the three basic functions (add, delete and update). Entity class’ constructor has two 
parameters for specifying working Phase and Job Type. It initializes database connection, 
queries the database with Phase and Job Type IDs, and sets all class’ variables with queried data. 

Class’ methods implementation is similar to Job Type Entity implementation. Phase has another 
class for handing the process of Parsing XML and applying checks, actions and reflection calls. 

---- apply phase check methodology comes here 

Normal Flow 

 

Redirection to Phase Z 

 

Redirection to Backup Phase 

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  37 

3.4.5.2 Phase Relations 

Phase table relates 6 tables (JobType, Use, Workstation, Reason, TransactionLog and 
OldTransactionLog) 

Phase relates User and Workstation as Many to Many relation (broken into User_Phase and 
Workstation_Phase respectively). It relates Reason, TransactionLog and OldTransactionLog as 
One to Many relation, and it has One to Many relation with Job Type (Job Time has Many 
Phases). 

Phase relation with User and Workstation helps in defining which User and Workstation can 
work on the Phase. For example, if User ABC should work on Phase P1 on Workstations W1 and 
W2, then Admin must set up this matrix. If any element of this matrix is not set, the work will 
not be accomplished due to the lack of configuration. 

Reason table has a set of reasons or problems for every Phase. These reasons help in redirecting 
and rejecting Jobs (See Phase Manager module). TransactionLog and OldTransactionLog save 
all transactions for a Job and reference Phase ID in transactions. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  38 

User

PK User_ID

User_Name

User_Password

User_AnyPhase

User_MaxJobs

User_IsActive

FK1 Role_ID

User_isLDAP

User_TimeStamp

Workstation

PK Wrkst_ID

Wrkst_Name

Wrkst_Location

Wrks_AnyPhase

Wrkst_Comment

FK1 OS_ID

Wrkst_WorkingDirectory

Wrkst_IsActive

Wrkst_TimeStamp

Phase

PK Phase_ID

PK,FK1 JT_ID

Phase_Name

Phase_Sequence

Phase_MaxPeriod

Phase_Description

Phase_XMLDescription

Phase_TimeStamp

JobType

PK JT_ID

JT_Name

JT_LifeTime

JT_Description

JT_NamingConvention

JT_TimeStamp

User_Phase

PK,FK1 User_ID

PK,FK2 Phase_ID

Workstation_Phase

PK,FK1 Wrkst_ID

PK,FK2 Phase_ID

TransactionLog

PK TL_ID

FK1 Job_ID

FK2 Phase_ID

FK3 User_ID

FK4 Wrkst_ID

FK5 JS_ID

TL_Date

TL_NoOfFiles

TL_StatusData

OldTransactionLog

PK OTL_ID

FK1 Job_ID

FK5 Phase_ID

FK4 User_ID

FK3 Wrkst_ID

FK2 JS_ID

OTL_Date

OTL_NoOfFiles

OTL_Status_Data

Reason

PK Reason_ID

PK,FK1 Phase_ID

Reason_Name

Reason_Description

  

3.4.5.3 Phase GUI 

AdminManagerGUI class initializes object of “PhasesManagerGUI”, which inherits 
“ BaseManagerGUI”, which inherits JPanel. “PhasesManagerGUI” has 3 panels: jPanel, 
masterPanel and detailsPanel. jPanel is the container of masterPanel and detailsPanel. 
masterPanel is the container of JComboBox and JList that loads all Job Types and their Phases of 
DAFv2. detailsPanel contains JButtons, JTextFields , JTextAreas and JLabels. 

On choosing Phase tab, all Job Types in DAFv2 will be loaded into the ComboBox, and will load 
Available Phase and Sequence Phase into two separate Lists. Any selected Phase in Available 
Phase List will adjust the details panel. Since the PhasesManagerGUI inherits from the 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  39 

BaseManagerGUI, the implementation of the reloadManager nullifies all controls and reloads 
them as tabs. This helps in getting the last updated data on refreshing tab. 

Admin can move Phase from Sequence List to Available List using movement buttons. Also the 
user can change the sequence of the Phases by using the Up and Down buttons then clicking on 
the Update Sequence Button. 
.

 

Fig. 3.4.4.3 

Changing any of details data of a selected Phase will enable the Update button; firing this button 
will save data into the database. Delete and Create buttons complete the 3 basic functionalities 
(add and delete). 

As illustrated in Figure 3.4.4.3, all data fields will be saved into Phase table, except the data that  
comes from Reason GUI, which will be saved into Reason table (see Figure 3.4.4.2). 

For adding and editing Reasons for a selected Phase, Admin must use Edit Reason button. 
Reason GUI follows Job Type and Phase also, it has a master panel that loads all reasons for this 
phase and a details panel for details data. Admin can add, delete and update, using Create, Delete 
and Update buttons, see figure 3.4.4.4. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  40 

Fig. 3.4.4.4 

3.4.6 User 

User is the human resource in DAFv2. To login to DAFv2, user credentials must be recorded in 
the database. Users can be categorized into different system Roles (see Roles); every user must 
have one and only one role. 

User data is used for authentication, authorization and validation; the first two functionalities are 
interesting in defining who is the logged in user and what this user should work on or be allowed 
to see. Validation User is interesting in checking if User can work on some Phases on a specific 
Workstation with Jobs from a special Collection. 

Validation process requires the administrator to choose the Phases on which User can work, in 
addition to defining the maximum number of Jobs that the user can start at a time. Validation 
process is not limited to User only; it is extended to Collection and Workstation as will be 
discussed later. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  41 

Technically, you can consider User validation as a four dimensional matrix (User, Phase, 
Workstation and Collection). Admin must take care of filling up this matrix. For simplicity, 
DAFv2 has distributed matrix filling into 3 tabs: User, Workstation and Collection. In User tab, 
admin can link up User with Phases. In Workstation tab, admin can link up Workstation with 
Phase and, finally, admin can link up Collection with User and Workstation in Collection tab. 

Each User in DAFv2 has a specific number of maximum Jobs that he/she can work on at a time. 
For example, if this number equals 2, User cannot work on more than those 2 Jobs at the same 
time. This condition with matrix condition must be satisfied in order to start a Job correctly. 

DAFv2 schema has some relaxation fields that reduce the settings of validation matrix; a User 
who has All  Phase field is enabled to work on all Phases if All Phase was set. These relaxation 
fields are applied to Workstation and Collection. 

3.4.6.1 User Entity 

User entity inherits from AdminModuleBase and implements the three basic functions (add, 
delete and update). Entity class’ constructor has one parameter for specifying working User. It 
initializes database connection, queries the database with User ID and sets all class’ variables 
with queried data. 

Class’ methods implements basic entity functions (load, add, delete and update), in addition to 
authentication and authorization function. 

User Authentication and Authorization 

User authentication applies three methods in order authenticate a User 

1- DAFv2 detects the logged in User; if this User Name is register in DAFv2 database then 
DAFv2 will authenticate this User. 

 
2-  If a User changes the logins through log in dialog; then DAFv2 will check if the User 

Name and Password are matched with a record in DAFv2 database. If this scenario is 
failed, DAFv2 tries the last method. 

 
3- DAFv2 will check if User name is register in DAFv2 database and will compare the 

Password with User’s domain password (for LDAP users only). Users can be declared as 
LDAP (Lightweight Directory Access Protocol) using User GUI. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  42 

 

 
Figure 3.4.5.1 

User authorization comes through implementing methods that check User’s Role and this Role’s 
Permissions (see Role). 

 

3.4.6.2 User Relations 

User table relates 6 tables (Role, Reports, Phase, Collection, TransactionLog and 
OldTransactionLog) 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  43 

User relates Phase and Collection as Many to Many relation (broken into User_Phase and 
User_Collection respectively). It relates Reports, TransactionLog and OldTransactionLog as One 
to Many relation, and it has One to Many relation with Role (Role has Many User). 

User relation with Phase helps in defining which User can work on which Phase. For example, if 
User ABC should work on Phase P1 then Admin must set up this relation using User_Phase 
table. Relation with Collection defines User domain Collections. 

As mentioned before, every User has one system’s Role; this relation is maintained using 
Role_ID filed in User table.  Reports, TransactionLog and OldTransactionLog are reference the 
User who did the action (made a transaction or a report). 

Role

PK Role_ID

Role_Description

Role_TimeStamp

User

User_Name

User_Password

User_AnyPhase

User_MaxJobs

User_IsActive

FK1 Role_ID

User_isLDAP

User_TimeStamp

Phase

PK Phase_ID

PK JT_ID

Phase_Name

Phase_Sequence

Phase_MaxPeriod

Phase_Description

Phase_XMLDescription

Phase_TimeStamp

User_Phase

PK User_ID

PK,FK1 Phase_ID

TransactionLog

PK TL_ID

Job_ID

Wrkst_ID

JS_ID

TL_Date

TL_NoOfFiles

TL_StatusData

OldTransactionLog

PK OTL_ID

Job_ID

Wrkst_ID

JS_ID

OTL_Date

OTL_NoOfFiles

OTL_Status_Data

Reports

PK Report_ID

Report_Name

Report_Date

Report_Description

Report_Query

Collection

PK Coll_ID

Coll_Name

Coll_Abbreviation

Coll_DefaultPath

Coll_Priority

Coll_AnyUser

Coll_AnyWorkstation

Coll_Active

Coll_Comment

Coll_TimeStamp

Own_ID

Prj_ID

Icg_ID

User_Collection

PK,FK1 Coll_ID

PK User_ID

 

3.4.6.3 User GUI 

AdminManagerGUI class initializes object of “UsersManagerGUI”, which inherits 
“ BaseManagerGUI”, which inherits JPanel. “UsersManagerGUI” has 3 panels: jPanel, 
masterPanel and detailsPanel. jPanel is the container of masterPanel and detailsPane. 
MasterPanel is the container of a sortable table that loads all Users of DAFv2. detailsPanel 
contains JButtons, JTextFields , JComboBoxs, JTrees, JLists, JCheckBoxs and JLabels. 

On choosing User tab, all Users in DAFv2 will be loaded into the sortable table. First row in this 
table will be selected and details data of the selected record will be adjusted in the details panel. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  44 

According the base class “ BaseManagerGUI”, the abstract function reloadManager 
implemented in UsersManagerGUI, this function nullifys all controls and reload them on tabs 
change. This helps in getting the last updated data on refreshing tab. 

Admin can assign any of the available phases, introduced in Available Phases Tree and grouped 
by Job Type to User, Using movement buttons. Assigned Phases represent the Phases that User 
can work on. Admin can relax User_Phase relations by checking All Phases check box. Other 
controls are for choosing User Role, setting maximum Jobs’ number , setting User Name and 
Password, setting User as LDAP or not and activating or deactivating User. 

 

Fig. 3.4.5.3 

Changing any of details data of a selected row will enable the Update button, firing this button 
will save data into the database. Delete and Create buttons complete the 3 basic functionalities 
(add and delete). 

As illustrated in Figure 3.4.5.3, all data fields will be saved into User table, except the data that 
comes from Assigned Phases List, which will be saved into User_Phase table (see Figure 
3.4.5.2). 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  45 

3.4.7 Workstation 

DAFv2 has two types of machines; Workstations and Storage servers. Workstations are machines 
used by User to accomplish Jobs. Storage server is used to maintain workflow (see Phase 
Manager Module). 

Workstation is one edge of a 4D validation matrix; it relates to Phase and Collection. Therefore, 
admin must define Phases that the Workstation can work on and the Collection also. The concept 
of Phase relaxation is applied to Workstation as well as User, each Workstation has All Phases 
attribute carrying out this functionality. 

Admin determine Phases that can be worked on a Workstation according to Workstation’s 
attached Devices (Scanners, Plotters,…) or installed software (OCRing tool). 

Workstation is the User arena; he/she can download, edit and submit Jobs from Workstation. So, 
each Workstation has a working folder attribute that specifies every User’s working directory. 
Working directory value is preferred to be function of User, in other words, every User should 
has separate working directory on one Workstation in order to avoid overlapping. For example, 
consider a Workstation WS and Users U1 and U2. Working directory function for WS is 
“D:\User Data\$username$”, trace this actions 

1- U1 logged in WS 

2- DAFv2 calculates U1 working directory on WS by replacing “$username$” placeholder 
with U1 name. This results in working directory “D:\User Data\U1” 

3- U1 logged out WS 

4- U2 logged in WS 

5- DAFv2 calculates U2 working directory with same logic and gives the path “D:\User 
Data\U2”. 

This indicates that there will be a private and a separate working folder for every User. It should 
be mentioned that User Name filed in User table is unique, thus DAFv2 will not create one 
directory for two or more Users. The concept of separation is required in order to let every User 
be the sole controller on his/her work (this is not applicable on administrator; he/she has 
privileges to control every thing in DAFv2). 

Workstation can be configured to be more that a working area, it can be an archiving tool (see 
Archiver Manager Module). Suppose that Jobs must be archived on Blu-Ray or Tape; based on 
this, Admin must declare that there should be Workstations thathave Blu-Ray or Tapes drivers in 
order to write data on Medias. This declaration is what we call Workstation-MediaType relation  
; admin must identify Media Types capabilities on each Workstation to help Archiver Manager. 
If Archiver Manager works on a Workstation that is not configured to accept archiving media, 
the operation will fail. 

DAFv2 accepts identifying Devices (Scanner, Printers…). Admin can declare that a Device X, Y 
or Z is attached to Workstation WS1. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  46 

Workstations in DAFv2 can be without any attached peripherals (Devices or Media Types 
Drivers), such Workstations function as working area for Users. 

 

Fig. 3.4.6.1 Workstation can archive on Taps and DVD and have Scanner and Printer 

3.4.7.1 Workstation Entity 

Workstation entity inherits from AdminModuleBase and implements the three basic functions 
(add, delete and update). Entity class’ constructor has one parameter for specifying working 
Workstation . It initializes database connection, queries the database with Workstation ID and 
sets all class’ variables with queried data. Class’ methods implements basic entity functions 
(load, add, delete and update). 

Authenticate Workstation depends on Workstation IP or Workstation Name. Firstly, DAFv2 
checks if logged in Workstation name is registered in the database or not. If not, DAFv2 tries to 
check if Workstation IP is recorded in the database or not. Success of any of the previous 
scenarios authenticates the Workstation. 

3.4.7.2 Workstation Relation 

Workstation table relates 7 tables (Phase, Collection, Device, MediaType, OperationSystem, 
TransactionLog and OldTransactionLog) 

Workstation relates Phase, Collection, Device and MediaType as Many to Many relation (broken 
into Workstation_Phase, Workstation_Collection, Workstation_Device and 
Workstation_MediaType respectively). It relates TransactionLog and OldTransactionLog as One 
to Many relation, and it has One to Many relation with OperatingSystem (many workstations 
may have the same operating system). 

`

Printer

Scanner

Tape Lib

DVD Driver

`

 

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  47 

Workstation relation with Phase helps in defining which Phases can work on which 
Workstations. Also the Workstation_Collection defines which Workstation can work on which 
Collections. Defining peripherals is done using Workstation_Device and 
Workstation_MediaType which declares attached devices and Media Types recording 
availability on a Workstation. 

Relation relaxation is applied to Workstation as well as Phase, the filed Wrks_AnyPhase 
shortcuts linking Workstation with all Phases. Collection Relation has two relaxation fields 
(AnyUser and AnyWorkstaion), thus completing the concept of Relation relaxation that will be 
discussed in Collection section. 

Collection

PK Coll_ID

Coll_Name

Coll_Abreviation

Coll_DefaultPath

Coll_Priority

Coll_AnyUser

Coll_AnyWorkstation

Coll_Active

Coll_Comment

Coll_TimeStamp

Own_ID

Prj_ID

Icg_ID

Workstation

PK Wrkst_ID

Wrkst_Name

Wrkst_Location

Wrks_AnyPhase

Wrkst_Comment

FK1 OS_ID

Wrkst_WorkingDirectory

Wrkst_IsActive

Wrkst_TimeStamp

OperatingSystem

PK OS_ID

OS_Name

OS_TimeStamp

Device

PK Device_ID

Device_Name

Device_Description

Device_TimeStamp

Workstation_Device

PK,FK1 Wrkst_ID

PK,FK2 Device_ID

Workstation_Collection

PK,FK1 Coll_ID

PK,FK2 Wrkst_ID

Phase

PK Phase_ID

PK JT_ID

Phase_Name

Phase_Sequence

Phase_MaxPeriod

Phase_Description

Phase_XMLDescription

Phase_TimeStamp

Workstation_Phase

PK,FK1 Wrkst_ID

PK,FK2 Phase_ID

TransactionLog

PK TL_ID

Job_ID

Phase_ID

User_ID

FK1 Wrkst_ID

JS_ID

TL_Date

TL_NoOfFiles

TL_StatusData

OldTransactionLog

PK OTL_ID

Job_ID

Phase_ID

User_ID

FK1 Wrkst_ID

JS_ID

OTL_Date

OTL_NoOfFiles

OTL_Status_Data

MediaType

PK MT_ID

MT_Name

MT_Size

MT_TimeStamp

Storage_ID

Workstation_MediaType

PK,FK1 Wrkst_ID

PK,FK2 MT_ID

 

Fig 3.4.6.2 

3.4.7.3 Workstation GUI 

AdminManagerGUI class initializes object of “WorkstationsManagerGUI”, which inherits 
“ BaseManagerGUI”, which inherits JPanel. “WorkstationsManagerGUI” has 3 panels: jPanel, 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  48 

masterPanel and detailsPanel. jPanel is the container of masterPanel and detailsPane. 
MasterPanel is the container of a sortable table that loads all Users of DAFv2. detailsPanel 
contains JButtons, JTextFields , JComboBoxs, JTrees, JLists, JCheckBoxs, CheckBoxList and 
JLabels. 

On choosing Workstation tab, all Workstations in DAFv2 will be loaded into the sortable table, 
first row in this table will be selected and details data of the selected record will be adjusted in 
the details panel. Since the WorkstationsManagerGUI inherits from the BaseManagerGUI , the 
implementation of the reloadManager nullifies all controls and reloads them as tabs change. 
This helps in getting the last updated data on refreshing tab. 

Admin can assign any of the Available Phases, introduced in the Available Phases Tree and 
grouped by Job Type to Workstation, using movement buttons. Assigned Phases represent the 
Phases that a Workstation can work on. Admin can relax Workstation_Phase relation by 
checking All Phases check box. Other controls are for choosing Operating System, defining 
name or IP or working directory, and setting the attached Devices or Media Types. 

 

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  49 

3.4.8 Collections 

DAFv2’s Collections is the logical grouping of Jobs. Job terminology is used widely in DAFv2 
system; it indicates any object that needs to be digitized, or any item in DAFv2. This includes 
Books, Images, Manuscripts, etc. Every Job must fall into 2 logical groups: Job Type and 
Collection. A new Collection is to be introduced when a new project starts or an existing project 
has a new Owner (as the Collection has only one owner, this will be changed to allow multiple 
owners per collection). 

Collection of Jobs is a grouping of physical Jobs, it has no actions. Jobs frequently come in 
Batches which are organized in Collections. Figure 3.4.3.2 shows the Collection. 

 

Fig. 3.4.3.2 

3.4.8.1 Collection Entity 

This entity inherits AdminModuleBase and implements the three basic functions (add, delete and 
update).  

Entity class’ constructor has one parameter for specifying working Collection. It initializes 
database connection, queries the database with Collection ID and sets all class’ variables with 
queried data. Thus, initializing Collection entity loads all its data in memory and gives the 
developer opportunity to work on this data offline (without database connection), unless he/she 
uses an operation that needs database connection (add, delete or update). Achieving this goal 
needs implementing setter and getter functions for all fields. 

Class’ methods (neither setters nor getters) have implemented based on following concepts: 

9- Set the necessary variables (fields) 

10- Prepare array list of these variables (argument list) 

11- Pass store procedure name and argument list to database handler 

Collection

Collection Owner

Batch 1 Batch 2 Batch 3

Job 1 Job 2 Job 3

ha
s

has
has

has

Job X Job Y Job Z

allowed
allowed

Workstation 1

Workstation 2

Workstation 3

User 1

User 2

User 3

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  50 

12- Receive data (if exists) from database into OperationInfo object (see database handler) 

Find the following code snippets 
 1. public  OperationInfo update(){ 
 2. ArrayList<Object> argList = new ArrayList<Object> (10); 
 3. argList.add(new Integer(id)); 
 4. argList.add(new String(collName)); 
 5. argList.add(new String(collAbrevation)); 
 6. argList.add(new String(collDefaultPath)); 
 7. argList.add(new Integer(collPriority)); 
 8. argList.add(new Boolean(collAnyUser)); 
 9. argList.add(new Boolean(collAnyWorkstation)); 
 10. argList.add(new Boolean(collActive)); 
 11. argList.add(new String(collComment)); 
 12. argList.add(new Integer(collOwnID)); 
 13. return conn.executeProcedure("Collection_Update",argList); 
 14.} 

Line 1:  Declares the function signature which returns OperationInfo object. 

Line 2:  Prepares argument list 

Lines 3-12: Sets argument list 

Lines 13: Passes stored procedure name and argument list to database connection and return data 
into the OperationInfo. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  51 

 

3.4.8.2 Collection Relations 

The Collection table is part of 6 relationships: 

1- Owner: each Collection has an Owner (Single owner). The Collection-Owner relation 
does not affect the flow or the behavior of the Job in the system in any way. The Owner 
is a View in the Metadata DB and is not modified within the DAF system. 

2- Project: each Collection has a Project (Single Project). The Collection- Project relation 
does not affect the flow or the behavior of the Job in the system in any way. The Project 
is a View in the Metadata DB and not modified within the DAF system. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  52 

3- In-Charge: each Collection has an In-Charge (Single In-Charge). The Collection- In-
Charge relation does not affect the flow or the behavior of the Job in the system in any 
way. The In-Charge is a View in the Metadata DB and not modified within the DAF 
system. 

4- User: Each collection is allowed only a set of Users to work on, due to special skills 
required for this collection or just for organizational purposes. To represent this relation 
another table is added (User_Collection) as this is a many to many relation. Jobs in 
Collections that are not legitimate to Users do not appear for these Users while retrieving 
a new Job. This relation can be relaxed by setting the Coll_AnyUser (one of the 
Collection table fields) flag to true. In this case any User will be able to operate on this 
Collection. 

5- Workstation: Same as Users, each collection is allowed only a set of Workstations to 
work on, due to special devices needed for this collection or just for organizational 
purposes. To represent this relation another table is added (Workstation_Collection) as 
this is a many to many relation. Jobs in Collections that are not legitimate to 
Workstations appear in the Get Job screen without allowing the User to select them. If 
the User would like to work on one of these Jobs then he/she has to change the 
Workstation he/she is using. This relation can be relaxed by setting the 
Coll_AnyWorkstation (one of the Collection table fields) flag to true. In this case any 
Workstation can be used to work on Jobs from this Collection. 

6- Batch: Jobs are joined to Collections using Batches, a Batch could be a logical grouping 
or a time grouping of Jobs within this Collection. A Batch can be contained in only one 
Collection and can have any number of Jobs. Please refer to the Batch Creation and 
Modification section in the Check-In module. 

For example, we have a collection that should use only high quality equipments and very skilled 
users due to its historical importance. This Collection is Owned by a party that only lent the 
material to the Digitization Lab for a short amount of time. This Collection will be represented in 
the system by: 1- Adding the Borrower as the CollectionOwner, 2- Adding the very skilled 
Operators only to this Collection and setting the Coll_AnyUser to false. 3- Adding only the 
Workstations equipped with the latest equipments and setting the Coll_AnyWorkstation flag to 
false. 4-Creating Batches for this collection according to the actual physical Batches they come 
in. 5- And finally adding Jobs to the Batches of this Collection accordingly. 

3.4.8.3 Collection GUI 

AdminManagerGUI class initializes object of “CollectionsManagerGUI”, which inherits 
“ BaseManagerGUI”, which inherits JPanel. “CollectionsManagerGUI” has 3 panels: jPanel, 
masterPanel and detailsPanel. jPanel is the container of masterPanel and detailsPanel. 
masterPanel is the container of a sortable table that loads all Collections of DAFv2. detailsPanel 
contains JButtons, JTextFields , JTextAreas, CheckBoxLists and JLabels that display and edit 
the details of the selected Collection from the masterpanel->SortableTable or when adding a new 
Collection. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  53 

When the user chooses the Collections tab, all Collections in DAFv2 will be loaded into the 
sortable table, first row in this table will be selected and details data of the selected record will 
be adjusted in the details panel. According the base class “ BaseManagerGUI”, the abstract 
function reloadManager implemented in CollectionsManagerGUI, this function nullify all 
controls and reload them on tabs change. This helps in getting the last updated data on refreshing 
tab. 

 

Changing any of the details data of selected row will enable the Update button, firing this button 
will save data into the database. Delete and Create buttons complete the 3 basic functionalities 
(add and delete). 

According to the Collection Entity relations, data from the CollectionManagerGUI is mapped in 
to 3 tables,  

a. The Collection Information like Collection Name, Collection Abbreviation, Priority, Any 
User (allows any user to work on this Collection regardless of the Attached Users), Any 
Workstation (allows any workstation to work on ), Is Active (used to reduce lookup lists) 
and the Comment are stored in the Collection table as well as the Owner, Project and In-
Charge relations. 

b. The Attached Users are stored in the User_Collection table. On each update, all the 
Users for this collection are deleted and then re-added from scratch. 

c. The Attached Workstations are stored in the Workstation_Collection table. On each 
update all the Workstations for this Collection are deleted and then re-added from 
scratch. 

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  54 

3.4.9 General Settings 

DAFv2 has infrequent modifications in entities such as (Device, Storage, job Condition, , 
Operating System and Media Type). One can create or update these entities at one time. DAFv2 
grouped these setting in single GUI in Admin Manager Module; they are located under 
“Settings” tab. Admin can choose the targeted entity to be change through Combo Box contains 
all these entities and apply whatever change he/she need. 

3.4.9.1 Device Entity 

As mentioned in Workstation section, Workstation may have attached devices, like scanners, or 
Printers. Admin can define or edit devices using Device entity. Find Device relation in figure 
3.4.7.1. 

 

Fig. 3.4.7.1 

3.4.9.2 JobCondition Entity 

Every Job in DAFv2 has Condition state; it could be Good, Bad or Unknown. Find  Job 
Condition in figure 3.4.7.2. 

Job

PK Job_ID

PK,FK3 TL_ID

Job_Date

Job_Path

Job_Priority

Job_DueDate

FK1 Batch_ID

FK2 JC_ID

Storage_ID

Job_TimeStamp

JobCondition

PK JC_ID

JC_Name

JC_Description

JC_TimeStamp

 

Fig. 3.4.7.2 

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  55 

3.4.9.3 OperatingSystem Entity 

Workstation must have an Operation System; Admin can create, edit or delete an Operating 
System in DAFv2. Find Operaing System relation in figure 3.4.7.3. 

 

Fig. 3.4.7.3 

3.4.9.4 Storage Entity 

DAFv2 uses Storage during ordinary workflow to upload and download jobs from storage server 
to a User’s workstation and vice versa. Storage is defined using IP, User Name and Password. 

 

Fig. 3.4.7.3 

 

 

3.4.9.5 MediaType Entity 

To archive Jobs, they must be written physically on Media Types. Media Types examples are 
(CDs, Tapes, OnlineStorage, Blu-Ray or Professional Disc for DATA (PDD)). Admin decides 
which Media Type he/she may use according to the availability of the Media and Media Driver 
he/she has. 

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  56 

Supporting Online Storage is feature of DAFv2; it can be beneficial if the system has an Online 
Storage or very large scale storage. Archiving data into Online Storage does not need Drivers to 
write data, furthermore, it needs FTP service and User credentials to write data on. 

Admin must configure FTP service on the Online Storage and fed up data to DAFv2, to make 
DAFv2 able to archive data on it. Find Media Type relation in figure 3.4.7.4. 

 

Fig. 3.4.7.4 

3.4.9.6 Settings GUI 

AdminManagerGUI class initializes object of “GeneralSettingsGUI”, which inherits 
“ BaseManagerGUI”, which inherits JPanel. “GeneralSettingsGUI” has 3 panels: jPanel, 
masterPanel and detailsPanel. jPanel is the container of masterPanel and detailsPane. 
masterPanel is the container of a Setting JComboBox that loads all of DAFv2 settings. 
detailsPanel contains JButtons, JTextFields and JLabels. 

On choosing Setting tab, all setting entities will be loaded into the JComboBox, any selected 
entities  will load their data into JList, show the controls related to their entity, and disable 
irrelevant controls to the selected entity. For any selection in the JList, details data of the selected 
record will be adjusted in the details panel. According the base class “ BaseManagerGUI”, the 
abstract function reloadManager implemented in GeneralSettingsGUI, this function nullify all 
controls and reload them on tabs change. This helps in getting the last updated data on refreshing 
tab. Find figures below. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  57 

 

Fig 3.4.7.5 

 

3.5 Reporting Module 
Due to the large number of Jobs in DAFv2 workflow, a monitoring or Reporting tool 
becomes significant. Reporting module provides monitor for the reporter user to find 
a Job or define its state and measure User performance and rate. 

 

DAFv2 has four types of reports with four different functionalities; 

1. System Workflow report 

2. Pending Jobs 
3. Late Jobs 
4. User rate 

Each of the previous will be discussed in detail in the following subsections.  



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  58 

 

For flexibility’s sake, the Reporting module gives the reporter opportunity to create 
his/her custom report through a report builder. Report builder gives only the 

administrator ability to write a direct query. 

 

3.5.1 System Workflow 

All Jobs in DAFv2 can be classified into Active or Inactive Jobs (revise CheckOut 
section, Archiving Module). System Workflow is concerned with the Active Jobs only 
(Jobs in TransactionLog table not OldTransactionLog). 

 

According to DAFv2 state diagram (Fig 3.5.1), every Job can be labeled as a member 

of one of the following three groups; 

a. Pending  
b. Processing  
c. Finished 

Pending Jobs group includes all Jobs that are in Assign, Redirect or Reject state. 

Processing Jobs group includes all Jobs in Start state. 

Finished Jobs group include all Jobs in Finish state. 

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  59 

Start

Reject

Assign

Redirect

FinishFile transfer Ordinary job finishing

Reject job for some problems

New Job Check-in Check-out To Repository

Basic State

Complementary State

DownloadUpload

Administrator accepts the recommendation

Job assigned to next state

Recommend re-do a phase to the job

Administrator accepts the rejection

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5.1 State Diagram 

 

There will not be any Job out of this classification, as the states (Assign, Redirect, 
reject, Start and Finish) are the DAFv2 Basic States. In other words, 

Complementary States can be reduced to Basic States, i.e. if a Job in Download 
or Upload state, it can be considered as in Start state.  

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  60 

The System Workflow report provides mainly Jobs’ states of a selected Job Type. It 
can go in depth by selecting Collection or Batch. Resultant data are distributed 

between selected Job Type’s Phases. 

 

Fig. 3.5.2 Workflow Report 

 

System workflow report can be expanded into 6 groups instead of 3; 

a. Pending Jobs (first time) 
b. Pending Jobs (more than once) 

c. Processing Jobs (first time) 
d. Processing Jobs (more than once) 
e. Finished Jobs (first time) 

f. Finished Jobs (more than once) 
This classification helps the report to detect the Jobs that have been in pending, 
processing or finished groups for the first time and the Jobs that have passed over 

these groups before. This discrimination is done on Phase level. See figure 3.5.3 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  61 

 

Fig. 3.5.3 Expanded Workflow Report 

 

It should be mentioned that every cell in the Workflow report is clickable for 

producing a list of Jobs that form the Workflow cell’s number. 

 

3.5.2 Pending Jobs 

Pending Jobs are the Redirected or Rejected Jobs. Redirect and Reject Job are two 
Basic States and functionalities in DAFv2. The difference between the two states is 
the following; 

User redirects a Job If the Job is finished correctly and User has a recommendation 

for this Job to be started in a recommended Phase and with recommended User. 
He/She rejects a Job, however,  if the Job has a problem preventing him/her from 
continuing work. 

 

Redirect or Reject can be done through Phase Manager buttons. To control the 

process of redirection and rejection, administrator must have a look on the redirected 
or rejected Jobs’ reasons. He/she also needs the  ability to approve or deny the 
redirected or rejected Jobs. 

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  62 

The Pending Jobs’ report loads all redirected and rejected Jobs associated with 
recommended Users and Phase, and gives the reporter the ability to approve or deny 

a Job through Approve and Deny buttons. It has a Job Download facility if the 
reporter needs to navigate the physical files of the pending Job; this may help in 
approving or denying a Job. See figure 3.5.4 

 

Fig. 3.5.4 Pending Jobs Report 

 

Reporter should note that the definition of Pending Jobs in the Workflow’s report 
differs from the one in the Pending Jobs’ report. The first includes three states 
(Assign, Redirect and Reject). The second includes Redirected and Rejected Jobs 

only. 

 

3.5.3 Late Jobs 

The Late Jobs’ report is a straightforward one; it simply shows the Jobs that are past 
their Due Date. Every Checked-In Job in DAFv2 has a Due Date value. A Job should 
not pass this value, otherwise it will be considered a late Job. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  63 

 

Fig. 3.5.5 Late Jobs Report 

 

Reporter can push late Jobs by changing Jobs’ due date or by raising Job priority 

value (figure 3.5.6). 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  64 

 

Fig. 3.5.6 Change due date or priority 

 

3.5.4 User Rates 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  65 

 

Fig. 3.5.7 User Rates (Pages Level) 

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  66 

 

Fig. 3.5.8 User Rates (Books Level) 

 

3.5.5 Report Builder 

Reporting Manager gives the reporting User the ability to create custom reports 

through Report Builder. It is primitive since it could have sophisticated report 
building using all resources in DAFv2. 

 

It covers mainly the most used resources (Collection, JobType, Language,… etc) and 
also provides searching on JobStatus, i.e. User can build a report for searching 

Finished Jobs. 

 

Reporter User can choose his/her searching domain; Old Jobs, New Job or both. 
He/she can also define the attributes that should  appear in the customized report. 
This attributes list is loaded from Attributes section in resource file; administrator 

can add, delete or update attributes in this section. 

 

Report builder detects the administrator and makes him/her able to write a direct 
query to the database; this query is of Select type. Delete, Insert or Update queries 
are prevented by code checks. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  67 

 

Generated reports are saved into Report table as report name and query. They are 
loaded if the user chooses Report builder tab and double clicks any of them. If User 

chooses New Report button, he/she will be redirected to building report GUI 

 

 

Fig. 3.5.9 Customized Reports 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  68 

 

Fig. 3.5.10 Report Builder 

 

 

3.6 Archiving Module 
DAFv2 workflow uses Storage servers in downloading or uploading Jobs (discussed in Phase 
Manager). Ordinary workflow will eventually fill up all space in these servers. Archiving data is 
a solution for this problem; it also offers the opportunity to save data into external Medias and to 
retrieve data from this media in the future. 

 

Logically, archiving solves the space problem by giving the archiver the ability to Check Out 
Jobs, which means removing the physical files of the checked out Jobs from Storage Server. 
DAFv2 prevents checking a Job out unless it was archived. 

 

Technically, archiving process’ input is the Backup Phase’s output, in other words, Backup 
Phase is responsible of zipping and versioning the Job folder (Job can get more than one 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  69 

version). Archiver seeks every backed up versions and those that have not been archived before 
and marks them as ready to archive. 

 

 

Figure 3.6.1 

Versions’ Separations (Already archived or Not archived) is done using database logic; it does 
not depend on physical files’ separation; this will be discussed in details later. 

 

Referring to Job Type and Media Type relation (Admin Manager Module), a Job Type can be 
defined to be archived on multiple Media Types, thus, all versions produced for every Job 
belonging to this Job Type must be archived on these Media Types. 

This can be represented as a 2D matrix. Check the following example:  

Jobs X and Y belong to Job Type JT1; JT1 is defined to be archived on Tapes and CDs. Backup 
Phase has ran twice on X lifecycle (2 different versions), and once on Y (only one version).The 
process now is handled by the archiver who will do the following; 

1. Decide which versions have been archived (it will yield no results) 
2. Start archiving X version 1, version 2 and Y version 1, on CDs. 
3. Start archiving the 3 versions on Tapes. 

 

 

 

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  70 

The formed matrix is: 

 

Job Version CD Tape 

X_version1 √ √ 

X_version2 √ √ 

Y_version1 √ √ 

Figure 3.6.2 

 

Archive processing needs human interaction; Archiving manager forms physical folders on 
logged on User’s working directory and waits for the User’s confirmation that he/she has written 
this folder to the media correctly through media driver. 

 

Checking a Job out requires that the Job has a nonempty archiving matrix; all versions must be 
marked as archived on dedicated media.  

 

Summarizing all, Archiving Manager helps archiving User by showing Jobs Versions that have 
not been archived before, forms Physical folder on User working directory and awaits User’s 
confirmation to mark these versions as archived. 

 

Archiving Manager has 3 modules: Archiver, Confirmation and Check Out module. We will go 
through each of them in the following sections. 

 

3.6.1 Archiver 

Archiver carries out the archiving process core. It decides which Jobs Versions need to be 
archived and on which Media, marks versions as archived, helps User to form media and creates 
media physical folder on working directory, waiting for the User to take action. 

 

Understating Archiver functionalities requires some concepts clarification: 

3.6.1.1 Media Type and Media relation 

A Media is one Instance of Media Type; it s distinguished by Barcode, which is a unique value. 
For example, a CD Media type may has multiple CDs (Medias), each of them may have a  
different barcode. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  71 

MediaType

PK MT_ID

MT_Name

MT_Size

MT_TimeStamp

Storage_ID

MT_Abbreviation

MT_LastBarcode

Media

PK Media_ID

Media_BarCode

Media_Location

Media_DelConfirm

Media_TimeStamp

 

Figure 3.6.1.1 

3.6.1.2 Barcoding 

Generating a new barcode requires checking that the barcode is totally unique and taking 
concurrent connections in consideration. When Archiver issues a decision creating new Media, 
DAFv2 does the following 

1. Defines the issued Media Type 
2. Locks Media Type table (for concurrency) 
3. Reads the last Barcode value that was saved into Media Type table 

(MT_LastBarcode attribute) 
4. Creates a Media item with this barcode in Media table 
5. Increments MT_LastBarcode value to be MT_LastBarcode+1 
6. Unlocks Media Type table 

Online Storage Barcoding is different; Online Storage depends on having huge storage, then 
there is no need to create more than one instance of Medias. Unless the Online Storage was 
changed, this is detected by changing Online Storage IP. The link between MediaType and 
Storage tables comes through Storage_ID value, which, utilized with Online Storage only, 
archive checks Storage IP or Name on issuing new Media. If this IP differs from previous Online 
Storage, then Archiver will create a new Media instance with these details; otherwise it will 
return the current Media of Online Storage. The following are the steps of Online Storage 
barcoding: 

1. Check If Media Type =1 (Online Storage) 
2. Get Barcode of last created Media instance of Online Storage’s Meda Type 
3. Get the current IP or machine Name of Online Storage through joining Storage 

and Media Type tables on Storage_ID link, where Media Type ID is online 
Storage (ID=1) 

4. Compare Values from step 2 and 3; if both are equals then do not create new 
Media instance, instead create Media instance with data from step 3 

It should be noted that Media barcode with Online Storage will be the Storage IP or machine 
name. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  72 

3.6.1.3 Data Source 

As shown in figure 3.6.1, Archiver input is the output of Backup Phase. All backed up files must 
pass – one time at least- through the archiver. Archiver avoids Duplicates according to Choosing 
Criteria logic.   

 

3.6.1.4 Choosing Criteria 

Archiver depends totally on Backup Phase since it is its source and it fires up building Archiving 
matrix for every backed up Job versions. Once a Backup Phase finishs backing up a Job and 
forms a version of this Job, Archiver applies on this Job two actions 

1. Defines which Media Types this version should be written on according to JobType–
MediaType relation (revise Job Type – Admin Manager Module). 

2. Build up the Archiving Matrix for the backed up Job (figure 3.6.2) 
 

Once the archiving process is started, Archiver checks up the Archiving Matrix and avoids all 
selected boxes. It seeks unmarked entries and considers then as source. 

 

The following example may help: a Job belongs to a Job Type that should be archived on CDs 
and Online Storage. Backup Phase produced two versions in the Job lifecycle. Archiving User 
decides to archive on CD. Archiver will do the following 

1. Builds up an archiving matrix 
Job Version CD Online Storage 

version1   

version2   

2. It finds that version1 is not archived, so, archive it and mark its entry. 
Job Version CD Online Storage 

version1 √  

version2   

3. If Archiving User continues archiving on CDs, Archiver will exclude all marked entries 
and introduce unmarked ones. It will choose version2 and mark it. 

Job Version CD Online Storage 

version1 √  

version2 √  

4. Archiver will not find any unmarked entries for this Job to archive on CDs, its archiving 
matrix is full 

5. Same process will be applied when archiving on Online Storage 
 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  73 

Technically, Archiver chooses as follow 

1. Selects all finished backup entries from TransactionLog table 
2. Gets all Archived Entries on the specified Media Type 
3. Excludes all finished backup entries from already archived ones 
4. Introduces the excluded list as ready to archive list (versions list). 
5. For every entry of this list, archiver inserts entry on Job_Media table if the selected 

version is archived on selected Media. This step makes the selected version belong to the 
list that comes from Step 2 and hence guarantees that this version will not be one of Step 
3 list if the same Media was chosen. 

 

Record inserted in Job_Media table refers to Backup entry (Job’s Version) and Media ID 
(instance of Media Type). Backup entry is TransactionLog entry (for active Jobs) or 
OldTransactionLog entry (for old Jobs). See archiving schema in figure 3.6.1.2 

MediaType

PK MT_ID

MT_Name

MT_Size

MT_TimeStamp

FK1 Storage_ID

MT_Abbreviation

MT_LastBarcode

Media

PK Media_ID

Media_BarCode

Media_Location

Media_DelConfirm

Media_TimeStamp

User_ID

Wrkst_ID

Workstation

PK Wrkst_ID

Wrkst_Name

Wrkst_Location

Wrks_AnyPhase

Wrkst_Comment

OS_ID

Wrkst_WorkingDirectory

Wrkst_IsActive

Wrkst_TimeStamp

JobType

PK JT_ID

JT_Name

JT_LifeTime

JT_Description

JT_NamingConvention

JT_TimeStamp

TransactionLog

PK TL_ID

Job_ID

Phase_ID

User_ID

Wrkst_ID

JS_ID

TL_Date

TL_NoOfFiles

TL_StatusData

OldTransactionLog

PK OTL_ID

Job_ID

Phase_ID

User_ID

Wrkst_ID

JS_ID

OTL_Date

OTL_NoOfFiles

OTL_Status_Data

Storage

PK Storage_ID

Path

UserName

PassWord

Storage_TimeStamp
JobType_MediaType

PK,FK2 MT_ID

PK,FK1 JT_ID

Workstation_MediaType

PK,FK1 Wrkst_ID

PK,FK2 MT_ID

Job_Media

PK,FK2 Media_ID

PK,FK1 TL_ID

Job_Media_TimeStamp

 

Figure 3.6.1.2 

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  74 

3.6.1.5 Concurrent Archiving processes 

Archiving Module supports concurrent archiving processes; one or more can archive 
simultaneously. Archiver simply checks if the selected versions are currently in process with 
anther archiver or not, if there is a single intersected version, it notifies the User and refreshes the 
GUI since this anomaly can be done if the User does not refresh the ready to archive list. 

 

For Example User U1 and U2 Open Archiver GUI for a while ( and do not refresh it). U1 starts 
archiving and, after a small period of time, U2 starts archiving also on the not refreshed list and 
he/she chooses versions used by U1. DAFv2 applies checks on this list and finds that U2’s list  
has currently intersected versions with the other User list (U1). DAFv2 will notify U2 to select 
another set of version and will reload Ready to Archive list. 

 

3.6.1.6 Archiving Scenario 

After making concepts and criteria clear, it is time to introduce the Archiving process or 
scenarios. First of all, Admin defines for each Job Type its archiving Media Type from Admin 
Manager Module. Using Archiver Manager (Figure 3.6.1.3), User chooses which Media Type 
he/she needs to work on and the Archiving process will begin: 

1. Archiver will validate if the current Workstation can do the Archiving process for the 
selected Media Type or not (Workstation_MediaType relation). If yes, it will continue.If 
otherwise, it will halt. 

2. Archiver loads all Job versions that can be archived on the selected Media Type (see 
Choosing Criteria) 

3. User can select versions to be archived or even User First Fit option to facilitate selecting 
process 

4. User may find help in Size progress bar. While it is blue, this means it’s safe to form Media 
that does not pass its size (If size exceeds the media size, the archiving for all the selected 
Jobs will not be done). 

5. Clicks on Archive button, Archiver will generate new Media instance (see Barcoding) 
6. Archiver checks if all the selected versions to archive have not been archived before on the 

same media (except if the media is Online Storage). 
7. All the selected versions are inserted into the database (Job_Media table) in one 

transaction.    
8. Archiver will form Physical folder on working directory for the logged in User. This folder 

name will be the Media barcode.  
9. Starts downloading all selected versions from the backup server into the formed folder 
10. Every downloaded entry will be marked as archived on this Media temporary waiting for a 

confirmation (will be discussed later). And hence building up archiving matrix 
 

3.6.1.7 First Fit Algorithm 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  75 

Archiver facilitates selecting Jobs’ versions according to their size, using First Fit algorithm, 
which iterates an all versions in Ready to Archive list and selects versions that have 
accumulative size less than total Media size. 

Once it finds a version that has an accumulative size greater that total Media size, it neglects it 
and tries to find another one that has a position next to this version in Ready to Archive list. 

 

3.6.1.8 Command Line Archiver 

DAFv2 supports command line functions in order to automate processes using scripts and 
batches. The archiving process can be automated using Start_Archiving and Finish_Archiving 
commands.  

 

Start_Archiving needs 2 arguments to start working; Media Type and Jobs versions’ count to 
download, i.e. the command java –jar DAFv2 Start_Archiving 1 /8, will create instance of 
Media Type with ID 1 and download 8 versions on this Media. It can be also java –jar DAFv2 
Start_Archiving 1 /all, which will download all versions on this Media. Start_Archiving forms 
the Media according to threshold value saved in the ResourceFile; this value is a percentage of 
total Media Type’s size. If Media Type size = 700 MB and threshold value = 80 %, 
Start_Archiving will discard Media forming until the total downloaded versions’ size pass 560 
MB (80%). 

 

Finish_Archiving takes 3 arguments to finish (confirm) archiving process, i.e. java –jar DAFv2 
Finish_Archiving CD000102 15 1 will finish version 1 of Job 15 in Media with barcode 
CD000102. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  77 

 

 

 

 

 

Figure 3.6.1.3 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  78 

3.6.2 Confirmation 

Archiving process ends with forming Media folder on the working directory. On finishing Jobs 
versions downloading, first level of confirmation will be fired, which is “Confirm Jobs versions 
on Media”. Figure 3.6.2.1 

 

Confirm Jobs versions on Media is the first confirmation level (out of 2). It helps the archiving 
User in answering the question “Are these versions what I need to archive on this Media?”. If the 
User confirms that the archived versions really chosen correctly to be archived on this Media 
type, then he/she must click on Confirm button, otherwise he/she can discard Media totally by 
clicking on Discard button. 

 

Discarding Media deletes Media Physical folder from the working directory and unmarks all 
versions’ entries (deletes all entries form Job_Media table related to the delete Media). 

 

Burning or writing the formed Media folder on the Media needs human interaction; he/she 
should do the writing process outside DAFv2, then he/she must confirm that the Media folder is 
written successfully on the physical Media (CD, Tape, DVD, or otherwise). This is the second 
level of confirmation; it can be done through Confirm Media tab (Figure 3.6.2.2) 

 

Archiving versions on Online Storage requires first level of confirmation; second level of 
confirmation is done implicitly.  The versions are moved directly to Online Storage through FTP 
service. If this movement is done successfully without any failure, then the versions are 
confirmed on Online Storage; otherwise, rollback these versions. Thus, second level of 
confirmation is done implicitly. 

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  79 

 

 

Figure 3.6.2.1 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  80 

 

Figure 3.6.2.2 

 

3.6.3 Check out 

Job lifecycle ends with archiving all its versions on dedicated Media Types, in other words, if the 
Archiving matrix is full. Checking a Job out  requires two conditions 

a. That the Job be in inactive state 
b. That the Job’s Archiving matrix is full 

First condition means that the Job is in a finished Backup phase state. Any other state will be 
considered as an active state. 

 

Actions associated with Checking out a Job are 

1. Moving Job’s entries from TransactionLog table to OldTransactionLog table. 
2. Deleting Job’s folder from Storage Server 
3. Deleting all Job’s versions from Backup Server 

 

 

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  81 

 

Forced Check out 

Jobs that have not satisfied the first condition in the Check Out process cannot ever be checked 
out, Jobs, however,  that have not satisfied the second one can be. User can use Forced Check 
Out option if the Archiving matrix is not full, but this action is not preferable, since Job’s 
versions are not archived correctly on all dedicated Media Types. 

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  82 

4. SYSTEM HANDLERS 

 

4.1 Authentication and Authorization Handler 
All the provided interfaces and services of the system are accessible through an authentication 
and authorization handler. This handler is responsible for customizing the application interface 
for the logged in User. Moreover, it authorizes each action or request submitted by User. 

 

4.2 XML Phases Handler 
The XML Phases Definition Handler is responsible for interpreting  and applying the XML 
definition of the Phases. Each Phase has its own XML Phases Definition, specifying the 
prerequisites and actions that need to be done before and after each Phase. The XML definition 
contains two main sections; Pre-Phase and Post-Phase. Each of these sections is composed of 
three subsections; Physical, Database and Reflection Call. 

All XML operations are done using a simple XML Handler that parses XML files called 
XmlHandler. This class parses the XML files and adjusts the encoding if necessary. Please 
refer to the JavaDoc section for the XMLHandler class. 

 

 

o Physical section: In the Pre-Phase section, the Physical section allows to describe the 
necessary folders and files structure required to start work in the Phase and which of 
them should be copied to the client’s working folder to execute the Phase. For example, 
it is possible to say that the OCR Phase can not start unless there are OTIFF folder with 
TIFF files and PTIFF folder with TIFF files on the main file server.  Only the PTIFF 
folder is required to be copied from the file server to the client’s working folder to do the 
OCR Phase. In the Post-Phase section, the Physical section allows to describe the 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  83 

necessary files and folders structure required to complete the Phase. It also defines which 
of the folders and files should return to the file server. For example, when finishing the 
Processing Phase there should be a PTIFF folder with a number of TIFF files equal to the 
ones in the OTIFF folder. 

o Database section: It is usually used in the Post-Phase section. It allows to define the 
structure of database information that should be submitted after finishing the Phase. It 
contains listing and naming for the fields that should be filled by the operator during his 
work in the Phase. This fields are saved as XML text, with the Phase information in the 
transaction log for reference and query later using XPath.  

o Reflection Call section: In this section, DWMS allows to specify the Java function that 
should be executed either in the Pre-Phase or Post-Phase. The function can start any 
process including files management, data entry, zipping, or encoding the files. In this 
section, it is possible to write the necessary code to ingest the objects in the digital 
document repository 

The  following is an example of an OCR Phase definition: 

<Phase Name="Book Arabic OCR"> 
 <PrePhase> 
  <Physical Mode="UnRestricted"> 
   <Folder Name="OTIFF" Create="false"  
              ToDestination="false" NewName="OTIFF"  
              Mode="Restircted"> 
    <File Name="OriginalFiles" Type="tif" Count="+"  
              ToDestination="false" Compare=""/> 
   </Folder> 
      . 
      . 
  </Physical> 
 </PrePhase> 
 <PostPhase> 
  <Physical Mode="UnRestricted"> 
   <Folder Name="TXT" Create="false"  
              ToDestination="true" NewName="TXT"  
              Mode="Restircted"> 
    <File Name="" Type="frf" Count="1"  
              ToDestination="true" Compare=""/> 
    <File Name="" Type="art" Count="1"  
              ToDestination="true" Compare=""/> 
   </Folder> 
  </Physical> 
  <Database> 
   <Field Name="Font" DisplayName="Font Family: " /> 
   <Field Name="LrnPage" DisplayName="Learn Page : "/> 
      . 
      . 
  </Database> 
  <ReflectionCall Method="packageName.doSomething" /> 
 </PostPhase> 
</Phase> 

In the diagram XYZ you will find the Objects into which the XML Phase definitions is mapped. 
This map is done using the XML Phases Handler. The PhaseDef object maps to the root of the 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  84 

XML definition. It contains 2 SemiPhaseDefs one for the Pre-Phase and the other for the Post-
Phase. Each SemiPhaseDef may contain any of the 3 sections mentioned above 
(DatabaseDef, ReflectionDef and PhysicalDef). A DatabaseDef is a set of 
DatabaseElements. Each DatabaseElement has a name, a display name, a default value, a 
mandatory status,  and a list of predefined values to choose from (used in the UI as a dropdown 
list). The values are saved in the Database, in the StatusDef XML string in the DatabaseInfo 
section for the Done entry in the transaction log for the specified Phase. 

The ReflectionDef contains the path for the ReflectionCall method to call while performing 
the Phase Actions. It should be a fully qualifying name (the namespace.classname.methodname). 
All reflection calls have one parameter only, which is the JobID. 

The PhysicalDef section, describes the physical actions and checks to be done. Some of the 
attributes are used only for checks, others for actions. A PhysicalDef contain many 
PhysicalElements . Each PhysicalElement can either be afile (FileElement) or a folder 
(FolderElement).  

A FolderElement may contain another PhysicalElement. The folder FolderElement has 
a name, which is current name in the source location, and a newName, which is his name in the 
destination location (If the 2 names are not the same then the folder is copied into a new name). 
The toDestination property indicates whether it should be copied or not. The mode property is 
either restricted (allows only defined files or folder within this folder)  or unrestricted (allows at 
least the defined files and folders). 

A FileElement describes a set of files with the same properties. Each FileElement could 
have a name to be able to compare with later on. The compare takes a value another 
FileElement name to compare with. The compare is done based on the file count only, it 
compares the first files from the server and the second one from the client Working Folder. This 
check was added to prevent intentional or accidental files loss. The type property maintains the 
extension of the file set each file set can have only one extension or type. The toDestination 
property indicates whether to copy the folder from source to destination or not (from server to 
client in the pre-phase and from client to server in the post-phase). And finally the count flag is 
used to make sure that the files has a count (* for any count, + 1 or more, and any other number 
for that specific number). 

 

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  85 

 Diagram XYZ 

 

4.3 Files and FTP Handler 
The File Handler component is used by the XML Definition Handler to manage the file copying 
and movement. It is responsible for the necessary FTP handling with the file server and local file 
handling for the clients. 

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  86 

File handler is responsible for handling  files and folders(e.g. downloading, uploading, creating, 
deleting and getting file and folder information). File handler handles requests belonging to the 
local file system and handles requests regarding remote machines using File Transfer 
Protocol(FTP) . The following class diagram illustrates the classes involved in this handler 
module and the relationships between them. 

 

 

Remote File Handling 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  87 

The previous class diagram illustrates the classes involved in implementing remote file handling. 
We used entrerprised.net.ftp FTP library. The design applies  various design  patterns which 
allows for the flexibility and usability of system classes. FileHandlerFTPImpl is an adapter class 
to adapt the interface provided by FTPFileHandler class with the one expected by the clients of 
FileHandler abstract class. FTPFileHandler is a Façade class for all FTP classes in the system. 
Most of  the file handling operation are done via threads to allow multiple file manipulation. 

To allow monitoring of the status of file handling operation graphically or in consol (e.g. the 
name of transferred files, and a progress bar to indicate how much left), we apply an observer 
pattern, as we shown in the previous class diagrams.  

The following communication diagram illustrates how we add the observers to the observable 
object, and the creation of thread pool that holds the threads that handle file operation. 

 

<<meta class>>

FileHandlerFTPImpl

<<meta class>>

FTPFileHandler

: AddObserver(observer) 1: AddObserver(observer)

:FileHandlerFTPImpl :FTPFileHandler

: create

1: create(hostname, username, 

password, poolSize);

1.2: * addObserver(observer)

:observerArrLst

1.1: add(observer)

Add Pre Assigned 

observers 

:FTPThreadsPool

1.1: create(hostName, userName,

password, poolSize - 1, this)

 

The following sequence diagram illustrates the scenario of downloading a folder from a remote 
machine. As depicted after finishing the download operation we  compare the source folder with 
the copied one and delete the copied folder if the two folders do not match. We perform the 
comparison also in the case of uploading a folder. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  88 

 

alt

opt

alt

:FileHandlerFTPImpl
:FTPFileHandler

downloadFolder

getFolder

[destination folder name 

exist]

[overwrite]

return false

ref Delete the destination folder

 and  make a new one

[else]

ref getSubFolder(localFolderPath

,remoteFolderPath)

ref compareFolder(localFolderPath

,remoteFolderPath)

[The two folders match]

[else]

return true

ref Delete the unsuccessfully copied folder

return false

 
     

The following sequence diagram continue illustrating the download operation for a folder, which 
is referenced in the previous sequence diagram getSubFolder. As depicted, the downloaded 
folder is a recursive one, which means that if there are subfolders inside the source folder, they 
will be also copied.  

 

 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  89 

  

The following sequence diagram illustrates the scenario to download one file and how we use 
threads to fetch multiple files simultaneously, which is referenced in the previous sequence 
diagram getSingleFile. As depicted in the above class diagram, the FTPThread uses the FTP 
class library FTPClient to perform the file handling operation. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  90 

  

The following activity diagram shows how we get a thread from the thread pool. This diagram is 
referenced in the previous sequence diagram, getThread. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  91 

ad getThread()

[freeThreads.size > 0]

Get the next Free

Thread

Remove from the free

Thread list

Add to the used thread list

[freeThreads.size = 0]

[else]

Wait till another 

thread finish

[freeThreads.size + usedThreads.size 

< poolSize]

Create FTPClient 

and configure it

:FTPClient

Create FTPTherad

and configure it

:FTPThread

we will configure the FTPThread with 

the FTPClient object and the 

Observable object(FTPFileHandler)

passed to the FTPThreadsPool when 

created 

  

The following sequence diagram illustrates how the FTPThread handles file operations( 
download, upload, and delete) using the FTP class library FTPClient. 
It also shows how the FTPThread changes the state of the observable object, and in turn notifies 
the observers’ objects to update their states to reflect the status of file handling operations. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  92 

  

Local File Handling 

The previous class diagram illustrates the classes involved in implementing local file handling. 
We used java.io file classes in the standard Java library. The design also applies  two design  
patterns which allows for the flexibility and usability of system classes. FileHandlerLocalImpl is 
an adapter class to adapt the interface provided by LocalFileHandler class with the one expected 
by the clients of FileHandler abstract class. LocalFileHandler is a Façade class for all java.io file 
classes in the system. Unlike remote file handling, we did not used threads.  



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  93 

 

4.4 Database Handler  
DAFv2 logic is implemented and saved into stored procedures and functions, there is not any 
single query passed to the database without calling Stored Procedure. Going after this technique 
was for security and code flexibility reasons. 

Logic’s security is applied into DAFv2 by embedding it inside database’s stored procedures and 
functions and creating database users have no permissions except executing stored procedures 
and functions. Thus, users cannot hack the logic since they cannot insert, delete or update 
permissions. 

This technique helps also in making DAFv2 flexible. If a DAFv2 developer decides to change 
some logic, he/she need not modify the Java code, instead, he/she will modify the effected stored 
procedures or functions and rebuild them. Definitely, this scenario is valid for code’s segments 
that need nothing but database changes. In other words, developers need to modify and rebuild 
the Java code if the changes are related to GUI (for example). 

Once the developer decides to get or set values in the database, he/she must do the following; 

a. Decide which stored procedure he/she will use 

b. Prepare arguments’ list for this procedure 

c. Get database connection 

d. Pass storage procedure and arguments list to the method that execute the store 
procedures. 

e. Receive the result data, if it exists. 

It should be mentioned that these steps are encapsulated inside DAFv2 Entities (Revise 
administrator Module). Some functionalities, however, are not covered in System Entities. In 
such cases, applying preceding steps will be the solution.  

4.4.1 Singletoon Connection 

DAFv2 has at most a single live connection all over system modules, this is to reduce connection 
numbers and server management overhead. Singleton connection are implemented by declaring 
the connection constructor as a private one and creating a static method for getting the default 
connection. This function checks if the connection is alive or not; if not, it creates a new 
connection instance and considers it as the default one (Review JavaDoc file, class 
org.bibalex.daf.handlers.dbhandler.DBConnection). 

4.4.2 OperationInfo Object 

Executing a select statement in a procedure or function returns a result set that can be saved into 
result set object (JDBC). The retrieved data needs to be saved into some data structure; simply, it 
can be saved in array of objects, where every object maps to a single row. 



                                                                                 DAF II: Digitization Assets Factory 

DAF II: Digitization Assets Factory – Bibliotheca Alexandrina (September 4, 2007)  94 

OperationInfo object is our data structure which was built over result set object. It has two 
attributes; 

a. isValid  

b. result  

isValid attribute is a Boolean file that indicates operation success; it will be “True” if the 
database operation is executed successfully, otherwise it will be “False”. 

Result attribute is responsible of data saving; it accepts any object structure. DAFv2 passes 
DataTable structure to the result object. DataTable is a Vector of Objects structure; it reads 
values from the result set rows, forms new objects rows, and inserts the formed objects into 
Vector, which builds eventually the DataTable itself. Accessing elements in DataTable object 
can be done using two ways: 

a. Determine Row and Column index 

b. Determine Row index and Column name  

Check the following example; 

1. OperationInfo oprInf = new OperationInfo(); 
2. JobType jobType = new JobType(); 
3. DataTable dt = new DataTable(); 
4. oprInf = jobType.loadAll(); 
5. if (oprInf.isValid()) { 
6.  dt= (DataTable) oprInf.result(); 
7.  int JTID = Integer.parseInt(dt.getValueAt(0, 0).toString()); 
8. } 

Fig. 4.4.1 OperationInfo Example 
 

Lines 1, 2 and 3 initialize OpertionInfo, JobType entity and DataTable objects.  
Line4 executes loadAll method in JobType entity, which gets all Job Types in DAFv2. This 
method returns OperationInfo object.  
Line5 checks if the returned object is valid or not. 
Line6 casts OperationInfo result object into DataTable object. 
Line7 reads value from the DataTable (location 0,0) and parses it into integer. This line can be 
written as  
int JTID = Integer. parseInt(dt.getValueAt(0, “JT_ID”).toString()); 
Where “JT_ID” is the column name maps to column 0. 
 
All methods interacting with database have to prepare argument list and choose stored procedure 
then forward them all to executeProcedure method (DBConnection class), which returns always 
an OperationInfo object (isValid value + DataTable value). 

The User who is calling a method interacting with database and receiving the OperationInfo has 
to check isValid value at first to make sure operation was executed successfully (Fig. 4.4.1). 

 

  

 


